Advertisement

Evolution of Substructure of a Non-equiatomic FeMnCrCo High Entropy Alloy Deformed at Ambient Temperature

  • 235 Accesses

Abstract

The present investigation aims at discerning the evolution of microstructure of a Fe40Mn40Cr10Co10 high entropy alloy, under uni-axial loading at room temperature. At the time of quasi-static uni-axial loading, the alloy exhibited an ultimate tensile strength of ~ 514 MPa with fracture strain of ~ 47 pct. Multiple stages of work hardening were observed during the deformation. The initial work hardening of the alloy, for the true strain of ɛ ~ 0.05 to 0.1, was facilitated by the rigorous planar slip of dislocations. Extensive cell formation in the mid-strain levels, i.e., for ɛ ~ 0.1 to 0.29, resulted in overall softening. The onset of microband formation was also observed during the mid-strain level, which further got populated in large numbers during the final stage of deformation. Simultaneous occurrence of twins as well as deformation induced FCC → HCP phase transformation was observed in the grains oriented along TD//〈111〉 in the fractured specimen. Highly dense dislocation walls were also found at strain ɛ ≥ 0.29. The alloy showed an overall increase in work hardening before fracture, which was ascribed to the occurrence of twins, FCC → HCP phase transformation, microbands, and highly dense dislocation walls.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Change history

  • 10 January 2020

    In the original article, the second and third column headings are transposed in Table II.

References

  1. 1.

    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

  2. 2.

    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 213–218.

  3. 3.

    S. Ranganathan: Curr. Sci., 2004, vol. 85, pp. 1404–1406.

  4. 4.

    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: Science, 2014, vol. 345, pp. 1153–1158.

  5. 5.

    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Nature, 2016, vol. 534, pp. 227–30.

  6. 6.

    Y. Brif, M. Thomas, and I. Todd: Scr. Mater., 2015, vol. 99, pp. 93–96.

  7. 7.

    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: Acta Mater., 2013, vol. 61, pp. 5743–5755.

  8. 8.

    Y.L. Chou, J.W. Yeh, and H.C. Shih: Corros. Sci., 2010, vol. 52, pp. 2571–2581.

  9. 9.

    Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, and T. Duval: Corros. Sci., 2005, vol. 47, pp. 2679–2699.

  10. 10.

    C.C. Tasan, Y. Deng, K.G. Pradeep, M.J. Yao, H. Springer and D. Raabe: JOM, 2014, vol. 66, pp. 1993–2001.

  11. 11.

    B. Schuh, F. Mendez-martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Acta Mater., 2015, vol. 96, pp. 258–268.

  12. 12.

    G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George: Acta Mater., 2016, vol. 118, pp. 152–163.

  13. 13.

    A. Gali and E.P. George: Intermetallics, 2013, vol. 39, pp. 74–78.

  14. 14.

    J. Wung, J. Bok, J. Moon, S. Su, M. Ji, H. Yong, B. Lee, and H. Seop: Acta Mater., 2018, vol. 161, pp. 388–399.

  15. 15.

    Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y. Chiu, D. Dye, P.D. Lee, Y. Liu, and B. Cai: Acta Mater., 2018, vol. 154, pp. 79–89.

  16. 16.

    C.E. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, and S.R. Niezgoda: Acta Mater., 2018, vol. 158, pp. 38-52.

  17. 17.

    J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, and M.J. Mills: Acta Mater., 2017, vol. 132, pp. 35–48.

  18. 18.

    Z. Li and D. Raabe: JOM, 2017, vol. 69, pp. 2099-2106.

  19. 19.

    G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George: Acta Mater., 2017, vol. 128, pp. 292–303.

  20. 20.

    W. Huo, F. Fang, H. Zhou, Z. Xie, J. Shang, and J. Jiang: Scr. Mater., 2017, vol. 141, pp. 125–128.

  21. 21.

    B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie: Nat. Commun., 2016, vol. 7, pp. 1–8.

  22. 22.

    Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe: Acta Mater., 2015, vol. 94, pp. 124–133.

  23. 23.

    G.K. Williamson and W.H. Hall: Acta Metall., vol. 1, pp. 22-31, 1953.

  24. 24.

    K Jeong, J-E Jin, Y-S Jung, S Kang, and Y-K Lee: Acta Mater., 2013, vol. 61, pp. 3399-3410.

  25. 25.

    E.J. Mittemeijer and U Welzel: Z. Kristallogr., 2008, vol. 223, pp. 552-60.

  26. 26.

    G.K. Williamson and R.E. Smallman: Phil. Mag., 1956, vol. 1, pp. 34–46.

  27. 27.

    R.E. Smallman and K.H. Westmacott: Phil. Mag., 1957, vol. 2, pp. 669-83.

  28. 28.

    Y.H. Zhao, H.W. Shang, and K. Lu: Acta Mater., 2001, vol. 49, pp. 365–75.

  29. 29.

    B. Fultz and J. Howe: Transmission Electron Microscopy and Diffractometry of Materials, Springer, New Yrok, 2007

  30. 30.

    K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3651–3661.

  31. 31.

    J.D. Yoo and K.T. Park: Mater. Sci. Eng. A, 2008, vol. 496, pp. 417–424.

  32. 32.

    F.Y. Dong, P. Zhang, J.C. Pang, Q.Q. Duan, Y.B. Ren, K. Yang, and Z.F. Zhang: Acta Metall. Sin. 2016, vol. 29, pp. 140–149

  33. 33.

    D. Canadinc, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov: Acta Mater., 2005, vol. 53, pp. 1831–1842.

  34. 34.

    Y.-K. Lee: Scr. Mater., 2012, vol. 66, pp. 1002–1006.

  35. 35.

    B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–219.

  36. 36.

    N. Hansen and D.J. Jensen: Philos. Trans. R. Soc. A, 1999, vol. 357, pp. 1447–1469.

  37. 37.

    D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A, 2001, vol. 315, pp. 211–216.

  38. 38.

    X. Huang: Scr. Mater., 1998, vol. 38, pp. 1697–1703.

  39. 39.

    I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–6462.

  40. 40.

    P.S. Follansbee, and U.F. Kocks, Acta Metall., 1988, vol. 36, pp. 81–93.

  41. 41.

    D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig: Acta Mater., 2015, vol. 100, pp. 178–190.

  42. 42.

    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd edn. Elsevier, New York, 2004.

  43. 43.

    K.T. Park, G. Kim, S.K. Kim, S.W. Lee, S.W. Hwang, and C.S. Lee: Met. Mater. Int., 2010, vol. 16, pp. 1–6.

  44. 44.

    P.L. Mangonon and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577–1586.

  45. 45.

    C. Wang, W. Cao, J. Shi, C. Huang, and H. Dong: Mater. Sci. Eng. A, 2013, vol. 562, pp. 89–95.

  46. 46.

    Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–522.

  47. 47.

    J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

  48. 48.

    T.-H. Lee, C.-S. Oh, S.-J. Kim, and S. Takaki: Acta Mat., 2007, vol. 55, pp. 3649–3662.

  49. 49.

    L. Bracke, L. Kestens, and J. Penning: Scr. Mater., 2009, vol. 61, pp. 220–222.

  50. 50.

    I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2012, vol. 60, pp. 5791–5802.

  51. 51.

    I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552–60

  52. 52.

    P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang: Scr. Mater., 2006, vol. 55, pp. 629–31.

  53. 53.

    L. Meng, P. Yang, Q. Xie, H. Ding, and Z. Tang, Scr. Mater., 2007, vol. 56, pp. 931–34.

  54. 54.

    H. Fujita and T. Mori: Scr. Metall., 1975, vol. 9, pp. 631–636.

  55. 55.

    S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–1363.

  56. 56.

    H. Fujita and S. Ueda: Acta Met., 1972, vol. 20, pp. 759-767.

  57. 57.

    J.W. Brooks, M.H. Loretto, and R.E. Smallman: Acta Metall., 1979, vol. 27, pp. 1829–1838.

  58. 58.

    J.W. Brooks, M.H. Loretto, and R.E. Smallman: Acta Metall., 1979, vol. 27, pp. 1839–1847.

  59. 59.

    H. Idrissi, L. Ryelandt, M. Veron, D. Schryvers, and P.J. Jacques: Scr. Mater., 2009, vol. 60, pp. 941–944.

  60. 60.

    D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A., 1989, vol. 113, pp.1–41.

Download references

Acknowledgment

Authors are grateful to the Director, CSIR-NML for providing the financial grant and equipment support to carry out the work as Project No: OLP 0346 under the i-psg initiative.

Author information

Correspondence to M. Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 6, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandan, A.K., Tripathy, S., Ghosh, M. et al. Evolution of Substructure of a Non-equiatomic FeMnCrCo High Entropy Alloy Deformed at Ambient Temperature. Metall and Mat Trans A 50, 5079–5090 (2019). https://doi.org/10.1007/s11661-019-05438-z

Download citation