Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 12, pp 5602–5613 | Cite as

Stretchability of Commercial Purity Titanium Sheet

  • Teena Mouni Chinapareddygari
  • Chandrasekaran RavishankarEmail author
  • Karthikeyan Thangaraj
  • Shaju K. Albert
  • Utpal Borah
  • Anil Kumar Vesangi
  • Rohit Kumar Gupta
Article
  • 68 Downloads

Abstract

The article presents the results of tests to assess stretchability of commercial purity titanium sheet. The plastic strain ratio (r value) indicates strong normal anisotropy and weak planar anisotropy in the plastic properties. The forming limit diagram (FLD), determined by hemispherical punch stretching, exhibits limiting strains that are large at the smallest strain ratios, low at plane strain, and minimum at a strain ratio close to equibiaxial stretching. Hill’s criterion for localized necking, in conjunction with a best fit constitutive equation from the tensile test and the quadratic Hill’s yield surface, predicts the negative minor strain region of the FLD well. However, fracture as the mechanism limiting the deformation cannot be ruled out, especially as the negative minor strain region extends to the positive side with a minimum in the positive side. The increase in limit strains in the positive minor strain region beyond the minimum and the plane strain condition occurring in full dome stretching are explained as “anomalies” due to planar anisotropy. Electron backscatter diffraction (EBSD) studies show a strong basal texture that intensifies when deformed under plane strain and equibiaxial conditions. Under uniaxial tension, the basal plane texture changed to \( \left\{ {0001} \right\}\left\langle {11\bar{2}0} \right\rangle \) texture. Twinning is also found to be more under uniaxial tension. Trends in the mechanical properties correlate well with the EBSD results.

Notes

Acknowledgments

One of the authors (TMC) thanks the Department of Atomic Energy (DAE), India, for granting a senior research fellowship. The authors thank the Indian Space Research Organisation (ISRO) for providing the CP titanium sheets used in the investigation. The authors are grateful to the Central Workshop Division, IGCAR, for fabrication of the specimens; Ms. Paneer Selvi for her help in tensile testing; and Mr. A. Arasu for his help in grid circle measurements.

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. 1.
    S.P. Keeler and W.A. Backofen: ASM Trans Q., 1963, vol. 56, pp. 25–48.Google Scholar
  2. 2.
    G.M. Goodwin: SAE Tech. Pap. Ser., No. 680093, 1968, pp. 380–87.Google Scholar
  3. 3.
    K.S. Chan: Metall. Trans. A, 1985, vol. 16A, pp. 629–39.CrossRefGoogle Scholar
  4. 4.
    K.S. Chan, D.A. Koss, and A.K. Ghosh: Metall. Trans. A, 1984, vol. 15A, pp. 323–29.CrossRefGoogle Scholar
  5. 5.
    R. Sowerby and J.L. Duncan: Int. J. Mech. Sci., 1971, vol. 13, pp. 421–41.CrossRefGoogle Scholar
  6. 6.
    W.F. Hosford and R.M. Caddell: Metal Forming: Mechanics and Metallurgy, 2nd ed., PTR Prentice-Hall, Englewood Cliffs, NJ, 1993, pp. 270–73.Google Scholar
  7. 7.
    S. Pande, S.K. Sahoo, A. Dash, M. Bhagwan, G. Kumar, S.C. Mishra, and S. Suwas: Mater. Charact., 2014, vol. 98, pp. 93–101.CrossRefGoogle Scholar
  8. 8.
    Jong WooWon, Chan Hee Park, Seong-Gu Hong, and Chong Soo Lee: J. Alloys Compds., 2015, vol. 651, pp. 245–54.CrossRefGoogle Scholar
  9. 9.
    Xianping Wu, Surya R. Kalidindi, Carl Necker, and Ayman A. Salem: Metall. Mater. Trans. A, 2018, vol. 39A, pp. 3046–54.Google Scholar
  10. 10.
    A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J.S. Lecomte, T. Richeton, and K.E.K. Amouzou: Mater. Sci. Eng. A 2014, vol. 596, pp. 236–43.CrossRefGoogle Scholar
  11. 11.
    C. Ravishankar, R.K. Kumar: Mech. Adv. Mater. Struct., 2012, 19, 663–75.CrossRefGoogle Scholar
  12. 12.
    S.S. Hecker: Sheet Met. Ind., 1975, vol. 52, pp. 671–76.Google Scholar
  13. 13.
    ASTM International: Standard Test Method for Plastic Strain Ratio r for Sheet Metal, ASTM E517, ASTM International, West Conshohocken, PA, 2010.Google Scholar
  14. 14.
    ASTM International: Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8, ASTM International, West Conshohocken, PA, 2013.Google Scholar
  15. 15.
    C. Ravishankar: Ph.D. Thesis, Indian Institute of Technology, Madras, 2006, pp. 37–40.Google Scholar
  16. 16.
    M. Azrin and W.A. Backofen: Metall. Trans., 1970, vol. 1, pp. 2857–65.Google Scholar
  17. 17.
    M.J. Painter and R. Pearce: J. Phys. D: Appl. Phys., 1974, vol. 7, pp. 992–1002.CrossRefGoogle Scholar
  18. 18.
    D.A. Budford, K. Narasimhan, and R.H. Wagoner: Metall. Trans. A, 1991, vol. 22A, pp. 1775–88.CrossRefGoogle Scholar
  19. 19.
    ASTM International: Standard Test Method for Determining Forming Limit Curves, ASTM E2218, ASTM International, West Conshohocken, PA, 2015.Google Scholar
  20. 20.
    J.H. Hollomon: Trans. Am. Inst. Min. Metall. Pet. Eng., 1945, vol. 162, pp. 268–90.Google Scholar
  21. 21.
    P. Ludwik: Elemente der Technologischen Mechanik, Verlag von Julius, Springer, Leipzig, 1909.CrossRefGoogle Scholar
  22. 22.
    H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–18.CrossRefGoogle Scholar
  23. 23.
    E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537–62.Google Scholar
  24. 24.
    R. Hill: J. Mech. Phys. Solids, 1952, vol. 1, pp. 19–30.CrossRefGoogle Scholar
  25. 25.
    Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.CrossRefGoogle Scholar
  26. 26.
    N Srinivasan, R. Velmurugan, R Kumar, SK Singh, B Pant: Mater. Sci. Eng. A, 2016, vol. 674, pp. 540–51.CrossRefGoogle Scholar
  27. 27.
    Ayman A. Salem, Surya A. Kalidindi, and Roger D. Doherty: Acta Mater., 2003, vol. 51, pp. 4225–37.CrossRefGoogle Scholar
  28. 28.
    G.W. Groves and A. Kelly: Philos. Mag., 1963, vol. 8, pp. 877–87.CrossRefGoogle Scholar
  29. 29.
    M.C. Brandes, W. Morgan, and M.J. Mills: Proc. 13th World Conf. on Titanium, TMS, Warrendale, PA, pp. 1043–49.Google Scholar
  30. 30.
    R. Hill: The Mathematical Theory of Plasticity, Clarendon Press, Oxford, United Kingdom, 1950, pp. 317–40.Google Scholar
  31. 31.
    M. Taghvaipour, J. Chakrabarty, and P.B. Mellor: Int. J. Mech. Sci., 1972, vol. 14, pp. 117–24.CrossRefGoogle Scholar
  32. 32.
    Y.C. Liu and L.K. Johnson: Metall. Trans. A, 1985, vol. 16A, pp. 1531–35.CrossRefGoogle Scholar
  33. 33.
    F. Toussaint, L. Tabourot, and F. Ducher: J. Mater. Process. Technol., 2008, vol. 197, pp. 10–16CrossRefGoogle Scholar
  34. 34.
    A.K. Ghosh: Metall. Trans. A, 1976, vol. 7A, pp. 523–33.CrossRefGoogle Scholar
  35. 35.
    K.S. Chan and D.A. Koss: Metall. Trans. A, 1983, vol. 14A, pp. 1343–47.CrossRefGoogle Scholar
  36. 36.
    H. Vegter and A.H. van den Boogaard: Int. J. Plast., 2006, vol. 22, pp. 557–80.CrossRefGoogle Scholar
  37. 37.
    M. Weiss, M.E. Dingle, B.F. Rolfe, P.D. Hodgson: Trans. ASME 2007, 129: 530–37.CrossRefGoogle Scholar
  38. 38.
    Ossama M. Badr, Bernard Rolfe, Peter Hodgson, and Matthias Weiss: Mater. Des., 2015, vol. 66, pp. 618–26.CrossRefGoogle Scholar
  39. 39.
    A.F. Graf and W.F. Hosford: Metall. Trans. A, 1993, vol. 24A, pp. 2503–12.CrossRefGoogle Scholar
  40. 40.
    K.S. Chan and D.A. Koss: Metall. Trans. A, 1983, vol. 14A, pp. 1333–42.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Teena Mouni Chinapareddygari
    • 1
    • 2
  • Chandrasekaran Ravishankar
    • 1
    Email author
  • Karthikeyan Thangaraj
    • 4
  • Shaju K. Albert
    • 1
    • 2
  • Utpal Borah
    • 1
  • Anil Kumar Vesangi
    • 3
  • Rohit Kumar Gupta
    • 3
  1. 1.Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Materials and Mechanical EntityVikram Sarabhai Space CentreTrivandrumIndia
  4. 4.El Forge LimitedKanchipuramIndia

Personalised recommendations