Metallurgical and Materials Transactions A

, Volume 50, Issue 11, pp 5373–5383 | Cite as

Effect of Tool Shoulder Diameter on the Surface Hardness of Aluminum-Molybdenum Surface Composites Developed by Single and Double Groove Friction Stir Processing

  • V. P. Mahesh
  • Amit AroraEmail author


Molybdenum (Mo), possessing higher hardness compared to aluminum (Al), is used for the surface hardness improvement in Al 1050 alloy. Al-Mo surface composites are developed using friction stir processing with different tool shoulder diameters. Single groove composite (SGC) and double groove composite (DGC) samples are processed with 22-, 20-, and 18-mm shoulder diameter tools to study the effect of tool shoulder diameter and Mo content on the surface hardness of Al-Mo surface composites. Microhardness increased from 26 to 51 Hv on the top surface and 52 Hv on the cross section surface, in 18 DGC. The surface hardness of the composite samples increased with decrease in tool shoulder diameter due to the combined effect of grain refinement and Mo reinforcement particles. Unprocessed Al 1050 base alloy possessed an average grain size of ~ 99 µm. The grain size in the processed samples reduced with decrease in tool shoulder diameter. Surface composites processed with 22-, 20-, and 18-mm tools exhibited an average grain size of ~ 23, ~ 22, and ~ 21 µm, respectively. The amount of Mo particles incorporated in the composite material increased with decrease in tool shoulder diameter. Microstructural analysis confirmed that the FSP groove method incorporated about ~  8 wt pct Mo in 22 SGC and ~ 12 wt pct in 22 DGC, respectively. The amount of Mo particles in 20 SGC and 20 DGC is ~ 17 wt pct and ~ 22 wt pct, respectively, whereas 18 SGC and 18 DGC possessed ~ 27 wt pct and ~ 31 wt pct Mo particles. Mechanical shearing through severe plastic deformation during the friction stir processing reduced the average Mo particle size in the surface composites. Molybdenum is distributed in its elemental form in the Al-Mo surface composites without any intermetallic formation.



The authors would like to acknowledge the Indian Institute of Technology Gandhinagar for the support through funding and permission to use the equipment at the Central Facility. The authors would also like to thank the Board of Research in Nuclear Sciences (BRNS), (Project Number: 57/14/05/2019-BRNS) for the financial support.


  1. 1.
    R.M. Miranda, J. Gandra, and P. Vilaca: in Modern Surface Engineering Treatments, INTECH Open Science, 2013, pp. 1–20.Google Scholar
  2. 2.
    2 A. Almeida and R. Vilar: Rev. Metal., 1998, vol. 34, pp. 114–9.CrossRefGoogle Scholar
  3. 3.
    3 C.F. Chen, P.W. Kao, L.W. Chang, and N.J. Ho: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 513–22.CrossRefGoogle Scholar
  4. 4.
    4 B. Ralph, H.C. Yuen, and W.B. Lee: J. Mater. Process. Technol., 1997, vol. 63, pp. 339–53.CrossRefGoogle Scholar
  5. 5.
    5 M. Yang, C. Xu, and C. Wu: J. Mater. Sci., 2010, vol. 45, pp. 4431–8.CrossRefGoogle Scholar
  6. 6.
    V. Sharma, Y. Gupta, B.V. Manoj Kumar, and U. Prakash: Mater. Manuf. Process. 2016, vol. 31, pp. 1384–92.CrossRefGoogle Scholar
  7. 7.
    7 Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39, pp. 642–58.CrossRefGoogle Scholar
  8. 8.
    8 Y.J. Kwon, I. Shigematsu, and N. Saito: Scr. Mater., 2003, vol. 49, pp. 785–9.CrossRefGoogle Scholar
  9. 9.
    9 A. Kurt, I. Uygur, and E. Cete: J. Mater. Process. Technol., 2011, vol. 211, pp. 313–7.CrossRefGoogle Scholar
  10. 10.
    10 S. Sahraeinejad, H. Izadi, M. Haghshenas, and A.P. Gerlich: Mater. Sci. Eng. A, 2015, vol. 626, pp. 505–13.CrossRefGoogle Scholar
  11. 11.
    11 Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi: Mater. Sci. Eng. A, 2006, vol. 419, pp. 344–8.CrossRefGoogle Scholar
  12. 12.
    12 Y. Huang, T. Wang, W. Guo, L. Wan, and S. Lv: Mater. Des., 2014, vol. 59, pp. 274–8.CrossRefGoogle Scholar
  13. 13.
    13 A. Sharma, D. Narsimhachary, V.M. Sharma, B. Sahoo, and J. Paul: Surf. Coat. Technol., 2019, vol. 368, pp. 175–91.CrossRefGoogle Scholar
  14. 14.
    R. Bauri, D. Yadav, C.N. ShyamKumar, and B. Balaji: Mater. Sci. Eng. A, 2015, vol. 620, pp. 67–75.CrossRefGoogle Scholar
  15. 15.
    15 D. Yadav, R. Bauri, A. Kauffmann, and J. Freudenberger: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4226–38.CrossRefGoogle Scholar
  16. 16.
    16 S. Selvakumar, I. Dinaharan, R. Palanivel, and B. Ganesh Babu: Mater. Charact., 2017, vol. 125, pp. 13–22.CrossRefGoogle Scholar
  17. 17.
    17 N. Saunders: J. Phase Equilibria, 1997, vol. 18, pp. 370–8.CrossRefGoogle Scholar
  18. 18.
    18 M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokabi: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 188–97.CrossRefGoogle Scholar
  19. 19.
    19 N. Nadammal, S. V Kailas, J. Szpunar, and S. Suwas: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4247–61.CrossRefGoogle Scholar
  20. 20.
    20 A. Almeida, F. Carvalho, P.A. Carvalho, and R. Vilar: Surf. Coatings Technol., 2006, vol. 200, pp. 4782–90.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Advanced Materials Processing Research Group, Materials Science and EngineeringIndian Institute of Technology GandhinagarGandhinagarIndia

Personalised recommendations