Advertisement

An Investigation of Columnar to Equiaxed Transition and the Effect of Cooling Rate on Nucleus Density Distribution of an Industrial Ti and Nb-Stabilized Ferritic Stainless Steel

  • Yuyang Hou
  • Guoguang ChengEmail author
Article
  • 18 Downloads

Abstract

The heterogeneous nucleus distribution of an industrial Ti and Nb-stabilized ferritic stainless steel (FSS) with high-equiaxed zone ratio was investigated in detail. The heterogeneous nucleus is the complex nucleus mainly composed of central Ti-containing oxide and external (Ti,Nb)(CN). A “V” type distribution of complex nucleus was revealed in the thickness direction, indicating that the nucleus density decreases as the slab solidifies. A “W” type distribution of equiaxed crystals was also observed in the thickness direction. A linear relationship between equiaxed crystal density and nucleus density was obtained in the columnar to equiaxed transition (CET) and quarter position of the slab, indicating that the density of equiaxed crystals is significantly influenced by that of the complex nucleus. Theoretical analysis and confocal laser scanning microscopy experiments were carried out to reveal the distribution mechanism of the complex nucleus. The results showed that the cooling rate has a significant influence on the nucleation undercooling of FSS, which indirectly affects the formation of the complex nucleus. Based on these findings, a numerical model was established to investigate the CET of FSS, and the prediction was in good agreement with the experimental results. According to the numerical model, even if the nucleus density decreases during solidification, it is still sufficient for stimulation of CET.

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China [Project Grant No. 51374020]

References

  1. 1.
    H.-J. Shin, J.-K. An, S. H. Park and D. N. Lee, Acta Metall., 2003, vol. 51, pp. 4693-706.Google Scholar
  2. 2.
    J.-i. Hamada, Y. Matsumoto, F. Fudanoki and S. Maeda, ISIJ Int., 2003, vol. 43, pp. 1989-98.CrossRefGoogle Scholar
  3. 3.
    H. Liu, Z. Liu and G. Wang, ISIJ Int., 2009, vol. 49, pp. 890-96.CrossRefGoogle Scholar
  4. 4.
    Y. Shao, C. Liu, T. Yue, Y. Liu, Z. Yan and H. Li, Metall. Mater. Trans. B, 2018, vol. 49, pp. 1560-67.CrossRefGoogle Scholar
  5. 5.
    S. Ikeda, Nippon Steel Tech. Rep., 2010, vol. 99, pp. 2-8.Google Scholar
  6. 6.
    Y. Yazawa, Y. Ozaki, Y. Kato and O. Furukimi, JSAE Review, 2003, vol. 24, pp. 483-88.CrossRefGoogle Scholar
  7. 7.
    T. Kawasaki, Kawasaki Steel Tech. Rep., 1999, vol. 40, pp. 5-15.Google Scholar
  8. 8.
    K. Kimura and A. Takahashi, Nippon Steel Tech. Rep., 2010, vol. 99, pp. 51-55.Google Scholar
  9. 9.
    S. Kusunoki, R. Nishihara, K. Kato, H. Sakagami, S. Hirashima, and N. Fukunaga: Nippon Steel Tech. Rep., 2013, vol. 104.Google Scholar
  10. 10.
    Q. Rui, F. Jiang, Z. Ma, Z. You, G. Cheng and J. Zhang, Steel Res. Int., 2013, vol. 84, pp. 192-97.CrossRefGoogle Scholar
  11. 11.
    Z. You, G. Cheng, X. Wang, Z. Qin, J. Tian and J. Zhang, Metall. Mater. Trans. B, 2015, vol. 46, pp. 459-72.CrossRefGoogle Scholar
  12. 12.
    R. T. J. Hodges, Corros., 1971, vol. 27, pp. 119-27.CrossRefGoogle Scholar
  13. 13.
    H. Tomari, K. Fujiwara, K. Shimogori, T. Fukuzuka and M. Kanda, Corros., 1982, vol. 38, pp. 283-94.CrossRefGoogle Scholar
  14. 14.
    H. Y. Ha, C. J. Park and H. S. Kwon, Corros. Sci., 2007, vol. 49, pp. 1266-75.CrossRefGoogle Scholar
  15. 15.
    J. K. Kim, Y. H. Kim, S. H. Uhm, J. S. Lee and K. Y. Kim, Corros. Sci., 2009, vol. 51, pp. 2716-23.CrossRefGoogle Scholar
  16. 16.
    K. Ishii, T. Ishii, and H. Ota: JFE Tech. Rep., 2008, pp. 39–44.Google Scholar
  17. 17.
    P. Modak, S. Patra, R. Mitra and D. Chakrabarti, Metall. Mater. Trans. A, 2018, vol. 49, pp. 2219-34.CrossRefGoogle Scholar
  18. 18.
    S. Park, K. Kim, Y. Lee and C. Park, ISIJ Int., 2002, vol. 42, pp. 100-05.CrossRefGoogle Scholar
  19. 19.
    Y. Hou, S. Li and G. Cheng, Metall. Mater. Trans. A, 2018, vol. 49, pp. 5445-57.CrossRefGoogle Scholar
  20. 20.
    M. Brochu, T. Yokota and S. Satoh, ISIJ Int., 1997, vol. 37, pp. 872-77.CrossRefGoogle Scholar
  21. 21.
    Y. Hou and G. Cheng, ISIJ Int., 2018, vol. 58, pp. 2298-307.CrossRefGoogle Scholar
  22. 22.
    A. Ito, H. Suito and R. Inoue, ISIJ Int., 2012, vol. 52, pp. 1196-205.CrossRefGoogle Scholar
  23. 23.
    S. K. Kim, H. Suito and R. Inoue, ISIJ Int., 2012, vol. 52, pp. 1935-44.CrossRefGoogle Scholar
  24. 24.
    K. Kimura, S. Fukumoto, G. Shigesato and A. Takahashi, ISIJ Int., 2013, vol. 53, pp. 2167-75.CrossRefGoogle Scholar
  25. 25.
    J. Mola, I. Jung, J. Park, D. Chae and B. C. de Cooman, Metall. Mater. Trans. A, 2012, vol. 43, pp. 228-44.CrossRefGoogle Scholar
  26. 26.
    J. Fu, W. Qiu, Q. Nie and Y. Wu, J. Alloys Compd., 2017, vol. 699, pp. 938-46.CrossRefGoogle Scholar
  27. 27.
    C.-x. Shi, G.-g. Cheng, Z.-j. Li and P. Zhao, J. Iron Steel Res. Int., 2008, vol. 15, pp. 57-60.CrossRefGoogle Scholar
  28. 28.
    J. C. Villafuerte, H. W. Kerr and S. A. David, Mater. Sci. Eng. A, 1995, vol. 194, pp. 187-91.CrossRefGoogle Scholar
  29. 29.
    J. C. Villafuerte, E. Pardo and H. W. Kerr, Metall. Trans. A, 1990, vol. 21, pp. 2009-19.CrossRefGoogle Scholar
  30. 30.
    H. Fujimura, S. Tsuge, Y. Komizo and T. Nishizawa, Tetsu-to-Hagane, 2001, vol. 87, pp. 707-12.CrossRefGoogle Scholar
  31. 31.
    A. Hunter and M. Ferry, Metall. Mater. Trans. A, 2002, vol. 33, pp. 1499-507.CrossRefGoogle Scholar
  32. 32.
    J. Y. Kim, N. R. Oh, Y. H. Oh, Y. T. Cho, W. B. Lee, S. K. Kim and H. U. Hong, Mater. Charact., 2017, vol. 132, pp. 348-53.CrossRefGoogle Scholar
  33. 33.
    J. S. Park, D. H. Kim and J. H. Park, J. Alloys Compd., 2017, vol. 695, pp. 476-81.CrossRefGoogle Scholar
  34. 34.
    Y. Hou and G. Cheng, Metall. Mater. Trans. B, 2019, vol. 50, pp. 1322-33.CrossRefGoogle Scholar
  35. 35.
    Y. Hou and G. Cheng, Metall. Mater. Trans. B, 2019, vol. 50, pp. 1351-64.CrossRefGoogle Scholar
  36. 36.
    L. Bai, B. Wang, H. Zhong, J. Ni, Q. Zhai and J. Zhang, Metals, 2016, vol. 6, pp. 53-64.CrossRefGoogle Scholar
  37. 37.
    H. Shibata, S. Itoyama, Y. Kishimoto, S. Takeuchi and H. Sekiguchi, ISIJ Int., 2006, vol. 46, pp. 921-30.CrossRefGoogle Scholar
  38. 38.
    S. Ogibayashi: Nippon Steel Tech. Rep., 1994, pp. 70–76.Google Scholar
  39. 39.
    M. Gäumann, R. Trivedi and W. Kurz, Mater. Sci. Eng. A, 1997, vol. 226, pp. 763-69.CrossRefGoogle Scholar
  40. 40.
    D.A. Porter, K.E. Easterling, and M. Sherif: Phase Transformations in Metals and Alloys, (Revised Reprint). (CRC Press, Boca Raton, 2009).Google Scholar
  41. 41.
    Z. Hou, F. Jiang and G. Cheng, ISIJ Int., 2012, vol. 52, pp. 1301-09.CrossRefGoogle Scholar
  42. 42.
    X. Gao, S. Yang and J. Li, Mater. Design, 2016, vol. 110, pp. 284-95.CrossRefGoogle Scholar
  43. 43.
    H. Takeuchi, Y. Ikehara, T. Yanai and S. Matsumura, Tetsu-to-Hagane, 1977, vol. 63, pp. 1287-96.CrossRefGoogle Scholar
  44. 44.
    J. H. Park, S.-B. Lee and H. R. Gaye, Metall. Mater. Trans. B, 2008, vol. 39, pp. 853-61.CrossRefGoogle Scholar
  45. 45.
    J. H. Park and H. Todoroki, ISIJ Int., 2010, vol. 50, pp. 1333-46.CrossRefGoogle Scholar
  46. 46.
    J. H. Park, Calphad, 2011, vol. 35, pp. 455-62.CrossRefGoogle Scholar
  47. 47.
    J. S. Park and J. H. Park, Steel Res. Int., 2014, vol. 85, pp. 1303-09.CrossRefGoogle Scholar
  48. 48.
    D. Kashchiev, A. Borissova, R. B. Hammond and K. J. Roberts, J. Cryst. Growth, 2010, vol. 312, pp. 698-704.CrossRefGoogle Scholar
  49. 49.
    B. L. Bramfitt, Metall. Trans., 1970, vol. 1, pp. 1987-95.CrossRefGoogle Scholar
  50. 50.
    J. S. Park, C. Lee and J. H. Park, Metall. Mater. Trans. B, 2012, vol. 43, pp. 1550-64.CrossRefGoogle Scholar
  51. 51.
    J. A. Spittle, Int. Mater. Rev., 2006, vol. 51, pp. 247-69.CrossRefGoogle Scholar
  52. 52.
    J. K. Brimacombe and K. Sorimachi, Metall. Trans. B, 1977, vol. 8, pp. 489-505.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingP.R. China

Personalised recommendations