Quench Sensitivity of AA 7136 Alloy: Contribution of Grain Structure and Dispersoids

  • Jianguo Tang
  • Zhenshen Yang
  • Shengdan LiuEmail author
  • Qing Wang
  • Jingchao Chen
  • Wenru Chai
  • Lingying Ye


Quench sensitivity of the extruded AA7136 alloy plate specimens with coarse elongated recrystallized grains (CG), fine equiaxed recrystallized grains (EG), and fibrous partial-recrystallized grains (FG) was investigated with the aim to understand the quantitative contribution of grain structure and dispersoids. With the decrease of quenching rate from about 244 °C/s to 1.3 °C/s, the hardness decrement after aging is about 45, 40, and 30 pct, respectively, for the CG, EG, and FG specimens; therefore, quench sensitivity is the highest for CG specimen, intermediate for EG specimen, and the lowest for FG specimen. There are major quenching-induced η (MgZn2) phase and minor T (Al2Zn3Mg3) phase in the slowly-quenched CG, EG, and FG specimens, and a plate-like Y phase occasionally appears in subgrains of the FG specimen. The quantitative contribution to quench sensitivity by grain boundaries, subgrain boundaries, and dispersoids in different specimens is discussed based on the amount of quenching-induced precipitates associated with them.



This work is supported by the National Key Research and Development Program of China (2016YFB0300901), and the Shenghua Yuying Project of Central South University (20130603). The authors would like to thank Dr. Saiyi Li who helped in improving the manuscript.


  1. 1.
    X. Zhang, Y. Chen and J. Hu: Prog. Aerosp. Sci., 2018, vol. 97, pp. 22-34.CrossRefGoogle Scholar
  2. 2.
    T. Dursun and C. Soutis: Mater. Des., 2014, vol. 56, pp. 862-71.CrossRefGoogle Scholar
  3. 3.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller: Mater. Sci. Eng. A, 2000, vol. 80, pp. 102-07.CrossRefGoogle Scholar
  4. 4.
    P. A. Rometsch, Y. Zhang and S. Knight: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2003-17.CrossRefGoogle Scholar
  5. 5.
    M.F. Ibrahim, A.M. Samuel, and F.H. Samuel: Mater. Des., 2014, vol. 57, pp. 342-50.CrossRefGoogle Scholar
  6. 6.
    M.J. Starink, B. Milkereit, Y. Zhang, and P.A. Rometsch: Mater. Des., 2015, vol. 88, pp. 958-71.CrossRefGoogle Scholar
  7. 7.
    S.D. Liu, B. Chen, C.B. Li, Y. Dai, Y.L. Deng and X.M. Zhang: Corros. Sci., 2015, vol. 91, pp. 203-12.CrossRefGoogle Scholar
  8. 8.
    B.H. Nie, P.Y. Liu, and T.T. Zhou: Mater. Sci. Eng. A, 2016, vol. 667, pp. 106-14.CrossRefGoogle Scholar
  9. 9.
    A. Deschamps, G. Texier, S. Ringeval, and L. Delfaut-Durut: Mater. Sci. Eng. A, 2009, vol. 501, pp. 133-39.CrossRefGoogle Scholar
  10. 10.
    M. Tiryakioğlu, J.S. Robinson, and P.D. Eason: Mater. Sci. Eng. A, 2014, vol. 618, pp. 22-28.CrossRefGoogle Scholar
  11. 11.
    C.E. Bates and G.E. Totten: Heat Treat. Met., 1988, vol. 4, pp. 89-97.Google Scholar
  12. 12.
    G.P. Dolan, and J.S. Robinson: J. Mater. Process. Tech., 2004, vol. 153-154, pp. 346-51.CrossRefGoogle Scholar
  13. 13.
    J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska and R.C. Wimpory: Mater. Charact., 2012, vol. 65, pp. 73-85.CrossRefGoogle Scholar
  14. 14.
    S.T. Lim, S.J. Yun and S.W. Nam: Mater. Sci. Eng. A, 2004, vol. 371, pp. 82-90.CrossRefGoogle Scholar
  15. 15.
    J.S. Robinson, R.L. Cudd, D.A. Tanner and G.P. Dolan: J. Mater. Process. Tech., 2001, vol. 119, pp. 261-67.CrossRefGoogle Scholar
  16. 16.
    L.H. Lin, Z.Y. Liu, S. Bai, Y.R. Zhou, W.J. Liu and Q. Lv: Mater. Sci. Eng. A, 2017, vol. 682, pp. 640-47.CrossRefGoogle Scholar
  17. 17.
    J.S. Chen, X.W. Li, B.Q. Xiong, Y.A. Zhang, Z.H. Li, H.W. Yan, H.W Liu and S.H. Huang: Rare Met., 2017, pp. 1–7.Google Scholar
  18. 18.
    J.G. Tang, H. Chen, X.M. Zhang, S.D. Liu, W.J. Liu and H. Ouyang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1255-63.CrossRefGoogle Scholar
  19. 19.
    L.H. Lin, Z.Y. Liu, S. Bai, P.Y. Ying and X.H. Wang: Mater. Des., 2015, vol. 86, pp. 679-85.CrossRefGoogle Scholar
  20. 20.
    S.D. Liu, W.J. Liu, Y. Zhang, X.M. Zhang and Y.L. Deng: J. Alloys Comp., 2010, vol. 507, pp. 53-61.CrossRefGoogle Scholar
  21. 21.
    X.M. Zhang, W.J. Liu, S.D. Liu and M.Z. Zhou: Mater. Sci. Eng. A, 2011, vol. 528, pp. 795-02.CrossRefGoogle Scholar
  22. 22.
    C.B. Li, S.Q. Han, S.D. Liu, Y.L. Deng and X.M. Zhang: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 2276-82.CrossRefGoogle Scholar
  23. 23.
    Y. Deng, Z.M. Yin, K. Zhao, J.Q. Duan and Z.B. He: J. Alloys Comp., 2012, vol. 530, pp. 71-80.CrossRefGoogle Scholar
  24. 24.
    S.D. Liu, X.M. Zhang, M.A. Chen, J.H. You and X.Y. Zhang: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 787-92.CrossRefGoogle Scholar
  25. 25.
    H.C. Fang, H. Chao and K.H. Chen: Mater. Sci. Eng. A, 2014, vol. 610, pp. 10-16.CrossRefGoogle Scholar
  26. 26.
    H.Y. Li, J.J. Liu, W.C. Yu, H. Zhao and D.W. Li: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 1191-200.CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, C. Bettles, P.A. Rometsch: J. Mater. Sci., 2014, vol. 49, pp. 1709-15.CrossRefGoogle Scholar
  28. 28.
    C.B. Li, S.L. Wang, D.Z. Zhang, S.D. Liu, Z.J. Shan and X.M. Zhang: J. Alloys Comp., 2016, vol. 688, pp. 456-62.CrossRefGoogle Scholar
  29. 29.
    R.C. Dorward and D.J. Beernsten: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2481-84.CrossRefGoogle Scholar
  30. 30.
    S.D. Liu, Q.M. Zhong, Y. Zhang, W.J. Liu, X.M. Zhang and Y.L. Deng: Mater. Des., 2010, vol. 31, pp. 3116-20.CrossRefGoogle Scholar
  31. 31.
    S.D. Liu, C.B. Li, S.Q. Han, Y.L. Deng and X.M. Zhang: J. Alloys Compd., 2015, vol. 625, pp. 34-43.CrossRefGoogle Scholar
  32. 32.
    B. Morere, J.C. Ehrström, P.J. Gregson and I. Sinclair: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2503-15.CrossRefGoogle Scholar
  33. 33.
    H.C. Fang, H. Chao, K.H. Chen: J. Alloys Compd., 2015, vol. 622, pp. 166-73.CrossRefGoogle Scholar
  34. 34.
    A. Day, P. Trimby, K. Mehnert and B. Neumann: Channel 5: User Manual, Oxford Instruments, 2007.Google Scholar
  35. 35.
    X.M. Li and M.J. Starink: J. Alloys Compd., 2011, vol. 509, pp. 471-76.CrossRefGoogle Scholar
  36. 36.
    Y. Deng, Z.M. Yin and F.G. Cong: Intermetallics, 2012, vol. 26, pp. 114-21.CrossRefGoogle Scholar
  37. 37.
    K. Wen, B.Q. Xiong, Y.A. Zhang, G.J. Wang, X.W. Li, Z.H. Li, S.H. Huang and H.W. Liu: Rare Metal Mater. Eng., 2017, vol. 46, pp. 928-34.CrossRefGoogle Scholar
  38. 38.
    C. Mondal and A.K. Mukhopadhyay: Mater. Sci. Eng. A, 2005, vol. 391, pp. 367-76.CrossRefGoogle Scholar
  39. 39.
    K. Wen, Y.Q. Fan, G.J. Wang, L.B. Jin, X.W. Li, Z.H. Li, Y.A. Zhang and B.Q. Xiong: Mater. Des., 2016, vol. 101, pp. 16-23.CrossRefGoogle Scholar
  40. 40.
    J.K. Park and A.J. Ardell: Metall. Trans. A, 1983, vol. 14A, pp. 1957-65.CrossRefGoogle Scholar
  41. 41.
    A. Deschamps and Y. Brechet: Scripta Mater., 1998, vol. 39, pp. 1517-22.CrossRefGoogle Scholar
  42. 42.
    S.D. Liu, C.B. Li, Y.L. Deng, X.M. Zhang and Q.M. Zhong: Met. Mater. Int., 2014, vol. 20, pp. 195-200.CrossRefGoogle Scholar
  43. 43.
    N. Birbilis and R.G. Buchheit: J. Electrochem. Soc., 2005, vol. 152, pp. B140-51.CrossRefGoogle Scholar
  44. 44.
    G. Bergman, J.L.T. Waugh, and L. Pauling: Acta Cryst., 1957, vol. 10, pp. 254-59.CrossRefGoogle Scholar
  45. 45.
    H. Löffler, I. Kovács, and J. Lendvai: J. Mater. Sci., 1983, vol. 18, pp. 2215-40.CrossRefGoogle Scholar
  46. 46.
    S.D. Liu, Y. Zhang, W.J. Liu, Y.L. Deng and X.M. Zhang: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1-6.CrossRefGoogle Scholar
  47. 47.
    J.D. Robson: Mater. Sci. Eng. A, 2004, vol. 382, pp. 112-21.CrossRefGoogle Scholar
  48. 48.
    H. Zhao, F. De Geuser, A. K. Da Silva, A. Szczepaniak, B. Gault, D. Ponge, and D. Raabe: Acta Mater., 156:318-29, 2018CrossRefGoogle Scholar
  49. 49.
    Y. Zhang, M. Weyland, B. Milkereit, M. Reich and P.A. Rometsch: Sci. Rep., 2016, vol. 6, pp. 23109.CrossRefGoogle Scholar
  50. 50.
    Y. Zhang, B. Milkereit, O. Kessler, C. Schick and P.A. Rometsch: J. Alloys Compd., 2014, vol. 584, pp. 581-89.CrossRefGoogle Scholar
  51. 51.
    S.D. Liu, Q. Li, H.Q. Lin, L. Sun, T. Long, L.Y. Ye and Y.L. Deng: Mater. Des., 2017, vol. 132, pp. 119-28.CrossRefGoogle Scholar
  52. 52.
    J. Buha, R.N. Lumley, A.G. Crosky: Mater. Sci. Eng. A, 2008, vol. 492, pp. 1-10.CrossRefGoogle Scholar
  53. 53.
    X.S. Xu, J.X. Zheng, Z. Li, R.C. Luo, B. Chen: Mater. Sci. Eng. A, 2017, vol. 691, pp. 60-70.CrossRefGoogle Scholar
  54. 54.
    W.S. Rasband: ImageJ, U.S. National Institutes of Health, Bethesda, MD,, 1997–2009.
  55. 55.
    J.D. Robson and P.B. Prangnell: Mater. Sci. Technol., 2002, vol. 18, pp. 607-14CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Jianguo Tang
    • 1
    • 2
    • 3
  • Zhenshen Yang
    • 1
    • 2
  • Shengdan Liu
    • 1
    • 2
    • 3
    Email author
  • Qing Wang
    • 1
    • 2
  • Jingchao Chen
    • 1
    • 2
  • Wenru Chai
    • 1
    • 2
  • Lingying Ye
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaP.R. China
  2. 2.Key Laboratory of Nonferrous Metal Materials Science and EngineeringMinistry of EducationChangshaP.R. China
  3. 3.Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation CenterChangshaP.R. China

Personalised recommendations