Advertisement

Effect of Plastic Deformation on Pitting Mechanism of SS304

  • 144 Accesses

Abstract

Localized corrosion induced by plastic deformation has been reported for many alloys used in structural and functional applications. To understand the interplay of plastic deformation and pitting corrosion, samples of stainless steel 304 were subjected to different levels of plastic tensile strain and their corrosion behavior was studied. Plastic deformation is believed to alter materials’ surface condition, hence deteriorating the pitting resistance of materials. Results from this study suggest that in situ plastic deformation from 0.1 to 9 pct decreases the pitting potential of SS 304 to a similar level. Upon releasing the stress, slip steps formed at the metal surface due to plastic deformation contribute to the decrease in the pitting resistance of SS 304. Residual strain hinders pit repassivation to a minor extent. Results from electrochemical tests on samples with different levels of plastic strain are discussed in this paper.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    H.A. Johnston, Master Thesis at UBC, 1955, pp. 30–35.

  2. 2.

    [2] E.M. Gutman, Mechanochemistry of Materials, Cambridge International Science Publishing, Cambridge, 1998, pp 103-107.

  3. 3.

    Y. Yang and Y. Cheng: NACE-94050394, 2016, vol. 72(8), pp. 1035–43.

  4. 4.

    [4] X. Lou, Electrochimica Acta, 2011, vol.56(4), pp.1835-1847.

  5. 5.

    [5] L. Jinlong, L. Hongyun, Applied Surface Science, 2012, vol.263, pp.29-37.

  6. 6.

    [6] A. Barbucci, M. Delucchi, M. Panizza, M. Sacco, G. Cerisola, Journal of Alloys and Compounds, 2001, vol.317, pp.607-611.

  7. 7.

    [7] Y. Zhao, Y. Wang, X. Li, W. Zhang, S. Tang, Z. Liu, Journal of Materials Science, 2018, vol.53(12), pp.9258-9272.

  8. 8.

    [8] L. Peguet, B. Malki, B. Baroux, Corrosion Science, 2007, vol.49(4), pp.1933-1948.

  9. 9.

    [9] K.P. Staudhammer, L.E. Murr, Materials Science and Engineering, 1980, vol.44(1), pp.97-113.

  10. 10.

    [10] J. Yang, Q. Wang, K. Guan, International Journal of Pressure Vessels and Piping, 2013, vol.110, pp.72-76.

  11. 11.

    [11] A. Hassani, A. Habibolahzadeh, A. Javadi, S. Hosseini, Journal of Materials Engineering and Performance, 2013, vol.22(6), pp.1783-1789.

  12. 12.

    [12] L. Peguet, B. Malki, B. Baroux, Corrosion Science, 2009, vol.51(3), pp.493-498.

  13. 13.

    [13] J. Lv, H. Luo, Materials Science & Engineering C, 2014, vol.34, pp.484-490.

  14. 14.

    H Hanninen, W Cullen, M. Kemppainen: Corros. Int. J. Fatigue, 1991, vol. 13(2), pp. 182–182.

  15. 15.

    [15] A. Chiba, I. Muto, Y. Sugawara, N. Hara, Corrosion Science, 2016, vol.106, pp.25-34.

  16. 16.

    [16] S-H Jeon, S-T Kim, J-S Lee, I-S Lee, Y-S Park, Materials Transactions, 2012, vol.53(9), pp. 1617-1626.

  17. 17.

    J. Jun, K. Holguin, G.S. Frankel: NACE-94050394, 2014, vol. 70(2), pp. 146–55.

  18. 18.

    [18] A.H Ramirez, C.H Ramirez, I. Costa, International Journal of Electrochemical Science, 2013, vol. 8(12), pp. 12801-12815.

  19. 19.

    [19] J.Y. Choi, W. Jin, Scripta Materialia, 1997, vol.36(1), pp.99-104.

  20. 20.

    [20] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, Acta Metallurgica, 1977, vol.25(10), pp.1151-1162.

  21. 21.

    [21] J.W. Brooks, M.H. Loretto, R.E. Smallman, Acta Metallurgica, 1979, vol.27(12), pp.1829-1838.

  22. 22.

    [22] Y. Shen, X. Li, X. Sun, Y.D. Wang, L. Zuo, Materials Science and Engineering: A, 2012, vol.552, pp.514-522.

  23. 23.

    [23] K.M. Kim, J.H. Park, H.S. Kim, J.H. Kim, Y.Y. Lee, K.Y. Kim, International Journal of Hydrogen Energy, 2012, vol.37(10), pp.8459-8464.

  24. 24.

    [24] L. Jinlong, L. Tongxiang, W. Chen, G. Ting, Journal of Alloys and Compounds, 2016, vol.662, pp.143-149.

  25. 25.

    [25] J. Liu, D, Kaoumi, Materials Characterization, 2018, vol.136, pp.331-336.

  26. 26.

    [26] V. Vignal, N. Mary, C. Valot, R. Oltra, L. Coudreuse, Influence of elastic deformation on initiation of pits on duplex stainless steels, Electrochemical and Solid-State Letter, 2004, vol. 7(4), pp. C39-C42.

  27. 27.

    G. Wu, P. M. Singh, J. Electrochem. Soc., 2019, vol. 166(8), pp. C209–C216.

  28. 28.

    [28] W.C. Nickerson, N. Iyyer, K. Legg, M. Amiri, Corrosion Reviews, 2017, vol.35(4-5), pp.205-223.

  29. 29.

    [29] G. Olson, M. Cohen, Metallurgical Transactions A, 1975, vol.6(4), pp.791-795.

Download references

Acknowledgments

The author (Gaoxiang Wu) would like to thank the Renewable Bioproducts Institute at Georgia Institute of Technology (RBI) for the PSE graduate student fellowship. The authors would also like to acknowledge the RBI member companies for a partial financial support for this project. We are also thankful to Mr. Jamshad Mahmood for his help in various aspects of this project.

Author information

Correspondence to Preet M. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 11, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Singh, P.M. Effect of Plastic Deformation on Pitting Mechanism of SS304. Metall and Mat Trans A 50, 4750–4757 (2019). https://doi.org/10.1007/s11661-019-05394-8

Download citation