Correlation Between Plasticity and Atomic Structure Evolution of a Rejuvenated Bulk Metallic Glass

  • 143 Accesses


This article aims to establish a relation between the excitation of atomic structure, namely rejuvenation, and plasticity behavior of a Zr-based bulk metallic glass (BMG). The synchrotron X-ray diffraction (XRD) results showed that the cryothermal treatment leads to rejuvenation of the material, which is manifested by the structural disordering and the rearrangement of atomic clusters. It was also revealed that the rejuvenated structure provides more potential sites for shear-banding events during compressive loading. Hence, the homogeneous plasticity improves in the rejuvenated samples, which is recognized by a self-organized critical state of serrations in the stress–strain curves and high population of shear bands on the lateral surface of samples. On the other hand, a high energy barrier for shear transitions in as-cast specimens led to a semi-brittle failure with low plastic deformation. In general, with the increase in the number of cryothermal cycles, the rejuvenation as well as the non-localized deformation enhances in the BMG.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    E. Ma and J. Ding: Materials Today, 2016, vol. 19, pp. 568-579.

  2. 2.

    Y. Sun, A. Concustell and L. Greer: Nature Reviews Materials, 2016, 1, 16039.

  3. 3.

    T. P. Ge, C. Wang, J. Tan, T. Ma, X. H. Yu, C. Q. Jin, W. H. Wang and H. Y. Bai: Journal of Applied Physics, 2017, 121, 205109.

  4. 4.

    M. Liang, Y. Zhu, Z. Ji, J. Fu and C. Zheng: Journal of Materials Processing Technology, 2018, vol.251, pp. 47-53.

  5. 5.

    Y. Wu, D. Ma, Q.K. Li, A.D. Stoica, W.L. Song, H. Wang, X.J. Liu, G.M. Stoica, G.Y. Wang, K. An, X.L. Wang, M. Li and Z.P. Lu: Acta Materialia, 2017, 124, 478-488

  6. 6.

    D. Houdoux, T. Nguyen, A. Amon and J. Crassous: Phys. Rev. E, 2018, 98, 22905.

  7. 7.

    W. Guo, R. Yamada, J. Saida, S. Lü and S. Wu: Journal of Non-Crystalline Solids, 2018, vol. 498, pp. 8-13.

  8. 8.

    J. Pan, Y. Wang, Q. Guo, D. Zhang, A.L. Greer and Y. Li: Nat. Commun., 2018, 9, 560.

  9. 9.

    Y. Tong, W. Dmowski, H. Bei, Y. Yokoyama and T. Egami: Acta Materialia, 2018, vol. 148, pp. 384-390.

  10. 10.

    S. Ketov, Y. Sun, S. Nachum, Z. Lu, A. Checchi, A. Beraldin, H. Bai, W. H. Wang, D. Louzguine-Luzgin, M. A. Carpenter and A. L. Greer: Nature, 2015, vol. 524, pp. 200-203.

  11. 11.

    T. Hufnagel: Nature Materials, 2015, vol. 14, pp. 867-868.

  12. 12.

    B. Shang, P. Guan and J. L. Barrat: J. Phys., 2018, 1, 1.

  13. 13.

    N. V. Priezjev: Journal of Non-Crystalline Solids, 2019, vol. 503, pp. 131-138.

  14. 14.

    N. V. Priezjev, (2018).

  15. 15.

    W. Guo, R. Yamada and J. Saida: Intermetallics, 2018, vol. 93, pp. 141-147.

  16. 16.

    W. Guo, J. Saida, M. Zhao, S. Lü and S. Wu: Metallurgical and Materials Transactions A, 2019, vol. 50, pp. 1125-1129.

  17. 17.

    W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang and Z. Lu: Science Bulletin, 2018, vol. 63, pp. 840-844.

  18. 18.

    S. Ketov, A. Trifonov, Y. Ivanov, A. Churyumov, A. Lubenchenko, A. Batrakov, J. Jiang, D. Louzguine-Luzgin, J. Eckert, J. Orava and A. Greer: NPG Asia Materials, 2018, vol.10, pp. 137-145.

  19. 19.

    T.J. Lei, L. DaCosta, M. Liu, W.H. Wang, Y.H. Sun, A.L. Greer and M. Atzmon: Acta Mater., 2019, 164, 165-170.

  20. 20.

    W. Guo, J. Saida, M. Zhao, S. Lü, S. Wu: Materials Science & Engineering A, 2019, vol. 759, pp. 59-64.

  21. 21.

    W. Guo, Y Shao, J. Saida, M. Zhao, S. Lü, S. Wu: Journal of Alloys and Compounds, 2019, vol. 795, pp. 314-318.

  22. 22.

    M. Samavatian, R. Gholamipour, A. Amadeh and S. Mirdamadi: Journal of Non-crystalline Solids, 2019, vol. 506, pp. 39-45.

  23. 23.

    A. Cuesta, R. U. Ichikawa, D. Londono-Zuluaga, A. G. De la Torre, I. Santacruz, X. Turrillas and M. A.G. Aranda: Cement and Concrete Research, 2017, vol. 96, pp. 1-12.

  24. 24.

    F. Fauth, I. Peral, C. Popescu and M. Knapp: Powder Diffraction, 2013, vol. 28, pp. 5360-5370.

  25. 25.

    P. Juhás, T. Davis, C. Farrow and S. Billinge: Journal of Applied Crystallography, 2013, vol. 46, pp. 560-566.

  26. 26.

    M. Stoica,, J. Das, J. Bednarcik, H. Franz, N. Mattern, W. H. Wang and J. Eckert: J. Appl. Phys. 2008, 104, 13522.

  27. 27.

    M. Samavatian, R. Gholamipour, V. Samavatian, F, Farahani: Mater. Res. Express, 2019, 6, 65202.

  28. 28.

    J. Zhao, A. Inoue, C.T. Liu, P.K. Liaw, X. Shen, S. Pan, G. Chen and C. Fan: Scripta Materialia, 2016, vol. 117, pp. 64-67.

  29. 29.

    A. L. Greer and Y. H. Sun: Philosophical Magazine, 2016, vol. 96, pp. 1643-1663.

  30. 30.

    X.F. Zhang, S.P. Pan, J.W. Qiao and A.D. Lan: Computational Materials Science, 2017, vol. 128, pp. 343-347.

  31. 31.

    S. Lee, C. Lee, J. Lee, H. Kim, Y. Shibutani, E. Fleury and M. Falk: Appl. Phys. Lett., 2008, 92, 151906.

  32. 32.

    J.C. Qiao, Y. Yao, J.M. Pelletier and L.M. Keer: International Journal of Plasticity, 2016, vol. 82, pp. 62-75.

  33. 33.

    X. Tong, G. Wang, J. Yi, J.L. Ren, S. Pauly, Y.L. Gao, Q.J. Zhai, N. Mattern, K.A. Dahmen, P.K. Liaw and J. Eckert: International Journal of Plasticity, 2016, vol. 77, pp. 141-155.

  34. 34.

    B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao and W. H. Wang: Phys. Rev. Lett., 2010, 105, 35501.

  35. 35.

    M. Samavatian, R. Gholamipour, A. Amadeh and S. Mirdamadi: Materials Science and Engineering: A, 2019, vol. 753, pp. 218-223.

  36. 36.

    Z. Q. Zhang, K. K. Song, B. A. Sun, L. Wang, W. C. Cui, Y. S. Qin, X. L. Han, Q. S. Xue, C. X. Peng, B. Sarac, F. Spieckermann, I. Kaban and J. Eckert: Philosophical Magazine, 2018, vol. 98, pp. 1744-1764.

  37. 37.

    B. Shi, S. Luan and P. Jin: Journal of Non-Crystalline Solids, 2018, vol. 482, pp. 126-131.

  38. 38.

    Y. Zhao, A. Inoue, C. Chang, J. Liu, B. Shen, X. Wang and R. Li: Sci. Rep., 2014, 4, 5733.

Download references


The synchrotron X-ray experiments were performed at BL04 beamline at the ALBA Synchrotron with the collaboration of the ALBA staff.

Author information

Correspondence to Majid Samavatian or Reza Gholamipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 27, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samavatian, M., Gholamipour, R., Amadeh, A.A. et al. Correlation Between Plasticity and Atomic Structure Evolution of a Rejuvenated Bulk Metallic Glass. Metall and Mat Trans A 50, 4743–4749 (2019) doi:10.1007/s11661-019-05391-x

Download citation