Advertisement

Preparation of Ultrafine W-10 Wt Pct Cu Composite Powders and Their Corresponding Sintered Compacts

  • 108 Accesses

  • 2 Citations

Abstract

We propose a process to produce ultrafine W-10 wt pct Cu composite powders by reducing the mixtures of copper tungstate (CuWO4) and tungsten trioxide (WO3) (from the calcination of a mixture of ammonium paratungstate and copper nitrate trihydrate) with carbon black and hydrogen. First, ultrafine pre-reduced tungsten-copper (W-Cu) powders containing a small amount of WO2 were produced by reducing mixtures of CuWO4 and WO3 with insufficient carbon black; then the obtained products were further reduced by hydrogen to remove the residual oxygen. This method provides a simple and low-cost route to prepare ultrafine W-10 wt pct Cu composite powders. The composite powders were sintered at different temperatures [1323 K (1050 °C), 1373 K (1100 °C), 1423 K (1150 °C), 1473 K (1200 °C), and 1523 K (1250 °C)] for 3 hours. A maximum densification of the obtained compact was achieved at a sintering temperature of 1523 K (1250 °C), with a relative density, Vickers hardness and thermal conductivity of the W-10 wt pct Cu composites of 97.8 pct, 365 HV and 165 W/m K, respectively.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    [1] S.H. Lee, S.Y. Kwon, and H.J. Ham, Thermochim. Acta, 2012, vol. 542, pp. 2-5.

  2. 2.

    [2] M. Ardestani, H. Arabi, H.R. Rezaie, and H. Razavizadeh, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 796-800.

  3. 3.

    [3] P. Chen, G. Luo, Q. Shen, M. Li, and L. Zhang, Mater. Design, 2013, vol. 46, pp. 101-05.

  4. 4.

    [4] Y.D. Kim, N.L. Oh, ST Oh, and I.H. Moon, Mater. Lett., 2001, vol. 51, pp. 420-24.

  5. 5.

    [5] J. Korab, P.Štefánik, Š. Kavecký, P. Šebo, and G. Korb, Compos. Part A-Appl. S., 2002, vol. 33, pp. 577-81.

  6. 6.

    [6] M. Ahangarkani, K.Z. Madar, S. Borji, and Z. Valefi, Int. J. Refract. Met. Hard Mater., 2017, vol. 67, pp. 115-24.

  7. 7.

    [7] W. Chen, L. Dong, H. Zhang, J. Song, N. Deng, and J. Wang, Mater. Lett., 2017, vol. 205, pp. 198-201.

  8. 8.

    [8] E. Tejado, A.V. Müller, J.H. You, and J.Y. Pastor, J. Nucl. Mater., 2018, vol. 498, pp. 468-75.

  9. 9.

    [9] L.J. Kecskes, B.R. Klotz, K.C. Cho, R.J. Dowding, and M.D. Trexler, Metall. Mater. Trans. A, 2001, vol. 32, pp. 2885-93.

  10. 10.

    Ho PW, Li QF, Fuh JYH (2008) Mater Sci Eng A 485:657-63

  11. 11.

    [11] A.G. Hamidi, H. Arabi, and S. Rastegari, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 538-41.

  12. 12.

    [12] J.L. Johnson, Int. J. Refract. Met. Hard Mater., 2015, vol. 53, pp. 80-86.

  13. 13.

    [13] Y. Li, J. Zhang, G. Luo, Q. Shen, and L. Zhang, Int. J. Refract. Met. Hard Mater., 2018, vol. 71, pp. 255-61.

  14. 14.

    [14] S.H. Hong, and B.K. Kim, Mater. Lett., 2003, vol. 57, pp. 2761-67.

  15. 15.

    [15] Y. Guo, H. Guo, B. Gao, X. Wang, Y. Hu, and Z. Shi, J. Alloy Compd., 2017, vol. 724, pp. 155-62.

  16. 16.

    [16] X. Shi, H. Yang, S. Wang, G. Shao, X. Duan, Z. Xiong, and T. Wang, Mater. Chem. Phys., 2007, vol. 104, pp. 235-39.

  17. 17.

    [17] G.G. Lee, G.H. Ha, and B.K. Kim, Powder Metall., 2000, vol. 43, pp. 79-82.

  18. 18.

    [18] D.G. Kim, K.W. Lee, S.T. Oh, and Y.D. Kim, Mater. Lett., 2004, vol. 58, pp. 1199-203.

  19. 19.

    [19] G. Pintsuk, I. Smid, J.E. Döring, W. Hohenauer, and J. Linke, J. Mater. Sci., 2007, vol. 42, pp. 30-39.

  20. 20.

    [20] J. Cheng, C. Lei, E. Xiong, Y. Jiang, and Y. Xia, J. Alloy Compd., 2006, vol. 421, pp. 146-50.

  21. 21.

    [21] T.H. Kim, J.H. Yu, and J.S. Lee, NanoStruct. Mater., 1997, vol. 9, pp. 213-16.

  22. 22.

    [22] A.K. Basu, and F.R. Sale, J. Mater. Sci., 1978, vol. 13, pp. 2703-11.

  23. 23.

    [23] M.H. Maneshian, and A. Simchi, J. Alloy Compd., 2008, vol. 463, pp. 153-59.

  24. 24.

    [24] W.T. Qiu, Y. Pang, Z. Xiao, and Z. Li, Int. J. Refract. Met. Hard Mater., 2016, vol. 61, pp. 91-97.

  25. 25.

    [25] S.S. Ryu, Y.D. Kim, and I.H. Moon, J. Alloy Compd., 2002, vol. 335, pp. 233-40.

  26. 26.

    [26] M.H. Maneshian, A. Simchi, and Z.R. Hesabi, Mat. Sci. Eng. A, 2007, vol. 445-446, pp. 86-93.

  27. 27.

    [27] S.N. Alam, Mat. Sci. Eng. A, 2006, vol. 433, pp. 161-68.

  28. 28.

    [28] A. Dolatmoradi, S. Raygan, and H. Abdizadeh, Powder Technol., 2013, vol. 233, pp. 208-14.

  29. 29.

    [29] S.S. Ryu, H.R. Park, Y.D. Kim, and H.S. Hong, Int. J. Refract. Met. Hard Mater., 2017. vol. 65, pp. 39-44.

  30. 30.

    [30] C. Li, Y. Zhou, Y. Xie, D. Zhou, and D. Zhang, J. Alloy Compd., 2018, vol. 731, pp. 537-45.

  31. 31.

    [31] M. Hashempour, H. Razavizadeh, H.R. Rezaie, and M.T. Salehi, Mater. Charact., 2009, vol. 60, pp. 1232-40.

  32. 32.

    [32] B. Sun, J. Song, Y. Yu, Z. Zhuang, M. Niu, Y. Liu, T. Zhang, and Y. Qi, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 76-79.

  33. 33.

    [33] A.C. Franciné, A.G.P.D. Silva, and U.U. Gomes, Powder Technol., 2003, vol. 134, pp. 123-32.

  34. 34.

    [34] E. Ahmadi, M. Malekzadeh, and S.K. Sadrnezhaad, Int. J. Refract. Met. Hard Mater., 2009, vol. 28, pp. 441-45.

  35. 35.

    [35] G.D. Sun, K.F. Wang, C.M. Song, and G.H. Zhang, Int. J. Refract. Met. Hard Mater., 2019, vol. 78, pp. 100-06.

  36. 36.

    [36] C. Liang, F. Tian, Z. Wei, Q. Xin, and C. Li, Nanotechnology, 2003, vol. 14, pp. 196-205.

  37. 37.

    [37] X.P. Ji, W.C. Cao, C.Y. Bu, K. He, Y.D. Wu, and G.H. Zhang, Int. J. Refract. Met. Hard Mater., 2019, vol. 81, pp. 955-58.

  38. 38.

    [38] D.S. Venables, and M.E. Brown, Thermochim. Acta, 1996, vol. 282-283, pp. 265-76.

  39. 39.

    [39] T. Zimmerl, W.D. Schubert, A. Bicherl, and A. Bock, Int. J. Refract. Met. Hard Mater., 2017, vol. 62, pp. 87-96.

  40. 40.

    [40] V.L. Boris, Thermochim. Acta, 2000, vol. 360, pp. 109-20.

  41. 41.

    [41] Y. Shen, J. Mater. Chem. A, 2015, vol. 3, pp. 13114-88.

  42. 42.

    [42] D.G. Kim, B.H. Lee, S.T. Oh, Y.D. Kim, and S.G. Kang, Mat. Sci. Eng. A, 2005, vol. 395, pp. 333-37.

  43. 43.

    [43] J. Cheng, P. Song, Y. Gong, Y. Cai, and Y. Xia, Mat. Sci. Eng. A, 2008, vol. 488, pp. 453-57.

  44. 44.

    [44] J. Fan, T. Liu, S. Zhu, and Y. Han, Int. J. Refract. Met. Hard Mater., 2012, vol. 30, pp. 33-37.

Download references

Author information

Correspondence to Guo-Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 16, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, G. & Sun, G. Preparation of Ultrafine W-10 Wt Pct Cu Composite Powders and Their Corresponding Sintered Compacts. Metall and Mat Trans A 50, 4827–4838 (2019) doi:10.1007/s11661-019-05390-y

Download citation