Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4620–4631 | Cite as

Microstructure Formation and Micropillar Compression of Al-TiC Nanocomposite Manufactured by Solidification Nanoprocessing

  • Zuqi HuEmail author
  • Chezheng Cao
  • Marta Pozuelo
  • Maximilian Sokoluk
  • Jenn-Ming Yang
  • Xiaochun Li


The microstructure and mechanical responses of a pseudo-dispersed Al-TiC nanocomposite were thoroughly studied using micropillar compression and high-resolution transmission electron microscopy (HRTEM). The microstructure of the Al-7 vol pct TiC nanocomposite comprised the α-Al matrix, DO22-Al3Ti platelet and Al4C3, along with TiC domains in which ~ 30 vol pct TiC nanoparticles were loaded without sintering contact. The pseudo-dispersion of TiC nanoparticles was rationalized by the relationship between Van der Waals attraction, Brownian motion, and energy barrier. The microscale tetragonal DO22-Al3Ti compound exhibited excellent yield strength (YS) (1400 to 1667 MPa) and microplasticity (10.8 pct). Intermittent discrete strain bursts and size effects were observed in the single-crystalline Al/Al3Ti pillars. The remarkable YS (720 MPa) of the 3 μm Al-30 vol pct TiC composite pillars was attributed to Orowan strengthening and load transfer. The crystallographic orientation relationship at the Al/TiC interface was identified to be \( \left[ { 1 1 0} \right] (\bar{1}\bar{1}1 )_{\text{Al}} \parallel [ 1 1 0 ] (\bar{1}\bar{1}1 )_{\text{TiC}} \), while the solid bonding guaranteed the effective load transfer and prevented the dislocation avalanche. Nano-twins and edge dislocations were observed in the HRTEM images of TiC NPs and [Al + TiC] mixture, which suggested that the major deformation mechanisms of the Al-30 vol pct TiC composite pillars were dislocation ‘pile-up’ and twins.



The authors thank Noah Bodzin at the University of California, Los Angeles (UCLA). The assistance with pillar fabrication, FIBs operation and TEM sample preparation, as well as professional guidance for the in situ microcompression are greatly appreciated. We also acknowledge the Molecular & Nano Archaeology (MNA) Laboratory and Nano-electronics Research Facility, UCLA, who provide the SEM/FIBs facilities.


  1. 1.
    L. Ceschini, A. Dahle, M. Gupta, A.E.W. Jarfors, S. Jayalakshmi, A. Morri, F. Rotundo, S. Toschi and R. Arvind Singh, In Aluminum and magnesium metal matrix nanocomposites, (Springer Singapore: Singapore, 2017), pp 95–137.Google Scholar
  2. 2.
    V. Viswanathan, T. Laha, K. Balani, A. Agarwal and S. Seal, Materials Science and Engineering: R: Reports 2006, vol. 54, pp. 121-285.Google Scholar
  3. 3.
    Lian-Yi Chen, Jia-Quan Xu, Hongseok Choi, Marta Pozuelo, Xiaolong Ma, Sanjit Bhowmick, Jenn-Ming Yang, Suveen Mathaudhu and Xiao-Chun Li, Nature 2015, vol. 528, pp. 539-543.Google Scholar
  4. 4.
    Zeyi Guan, Injoo Hwang, Shuaihang Pan and Xiaochun Li, Journal of Micro and Nano-Manufacturing 2018, vol. 6, pp. 031008-031008-6.Google Scholar
  5. 5.
    Abdolreza Javadi, Shuaihang Pan and Xiaochun Li, Manufacturing Letters 2018, vol. 17, pp. 23-26.Google Scholar
  6. 6.
    Weiqing Liu, Chezheng Cao, Jiaquan Xu, Xiaojun Wang and Xiaochun Li, Mater Lett 2016, vol. 185, pp. 392-395.Google Scholar
  7. 7.
    S. W. Feng, Q. Guo, Z. Li, G. L. Fan, Z. Q. Li, D. B. Xiong, Y. S. Su, Z. Q. Tan, J. Zhang and D. Zhang, Acta Mater 2017, vol. 125, pp. 98-108.Google Scholar
  8. 8.
    Seung Min Han, Mark A. Phillips and William D. Nix, Acta Mater 2009, vol. 57, pp. 4473-4490.Google Scholar
  9. 9.
    Sudhanshu S. Singh, Enyu Guo, Huxiao Xie and Nikhilesh Chawla, Intermetallics 2015, vol. 62, pp. 69-75.Google Scholar
  10. 10.
    J. Ding, Q. Li, J. Li, S. Xue, Z. Fan, H. Wang and X. Zhang, Acta Mater 2018, vol. 149, pp. 57-67.Google Scholar
  11. 11.
    J. B. Holt and Z. A. Munir, Journal of Materials Science 1986, vol. 21, pp. 251-259.Google Scholar
  12. 12.
    Huabing Yang, Tong Gao, Haichao Wang, Jinfeng Nie and Xiangfa Liu, Journal of Materials Science & Technology 2017, vol. 33, pp. 616-622.Google Scholar
  13. 13.
    H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, Scripta Mater 2006, vol. 54, pp. 181-186.Google Scholar
  14. 14.
    M.A. Meyers and K.K. Chawla: Mechanical behavior of materials. (Cambridge University Press, 2009).Google Scholar
  15. 15.
    Julia R. Greer, Warren C. Oliver and William D. Nix, Acta Mater 2005, vol. 53, pp. 1821-1830.Google Scholar
  16. 16.
    K. S. Ng and A. H. W. Ngan, Acta Mater 2008, vol. 56, pp. 1712-1720.Google Scholar
  17. 17.
    M. D. Uchic, P. A. Shade and D. M. Dimiduk, Annu Rev Mater Res 2009, vol. 39, pp. 361-386.Google Scholar
  18. 18.
    Subin Lee, Jiwon Jeong, Youbin Kim, Seung Min Han, Daniel Kiener and Sang Ho Oh, Acta Mater 2016, vol. 110, pp. 283-294.Google Scholar
  19. 19.
    Dalun Ye: Handbook of thermodynamic data of practical inorganic substances 2nd ed. (Metallurgical Industry Press, Beijing, China, 2002).Google Scholar
  20. 20.
    J.N. Israelachvili: Intermolecular and surface forces. 3 ed. (Academic Press, 2015).Google Scholar
  21. 21.
    V. H. López and A. R. Kennedy, J. Colloid Interface Sci. 2006, vol. 298, pp. 356-362.Google Scholar
  22. 22.
    S. K. Rhee, J Am Ceram Soc 1970, vol. 53, pp. 386-389.Google Scholar
  23. 23.
    Qiaoli Lin, Ping Shen, Longlong Yang, Shenbao Jin and Qichuan Jiang, Acta Mater 2011, vol. 59, pp. 1898-1911.Google Scholar
  24. 24.
    Stefano Melis, Marcel Verduyn, Giuseppe Storti, Massimo Morbidelli and Jerzy Bałdyga, AlChE J. 1999, vol. 45, pp. 1383-1393.Google Scholar
  25. 25.
    R. Asthana and S. N. Tewari, Journal of Materials Science 1993, vol. 28, pp. 5414-5425.Google Scholar
  26. 26.
    D. R. Uhlmann, B. Chalmers and K. A. Jackson, J. Appl. Phys. 1964, vol. 35, pp. 2986-2993.Google Scholar
  27. 27.
    G. Kaptay, Metallurgical and Materials Transactions A 2001, vol. 32, pp. 993-1005.Google Scholar
  28. 28.
    J. Q. Xu, L. Y. Chen, H. Choi and X. C. Li, J. Phys.: Condens. Matter 2012, vol. 24, pp. 255304-255314.Google Scholar
  29. 29.
    D. Shangguan, S. Ahuja and D. M. Stefanescu, Metallurgical Transactions A 1992, vol. 23, pp. 669-680.Google Scholar
  30. 30.
    J. K. Kim and P. K. Rohatgi, Metallurgical and Materials Transactions A 1998, vol. 29, pp. 351-358.Google Scholar
  31. 31.
    E. A. Starke, Y. Khalfalla and K. Y. Benyounis, In Reference Module in Materials Science and Materials Engineering, (Elsevier: 2016).Google Scholar
  32. 32.
    Zichuan Lu, Ningxia Wei, Peng Li, Chunhuan Guo and Fengchun Jiang, Materials & Design 2016, vol. 110, pp. 466-474.Google Scholar
  33. 33.
    R. Mitra: Structural intermetallics and intermetallic matrix composites. (CRC Press, 2015).Google Scholar
  34. 34.
    M. Yamaguchi, Y. Umakoshi and T. Yamane, Philosophical Magazine A 1987, vol. 55, pp. 301-315.Google Scholar
  35. 35.
    Yunyi Fu, Rong Shi, Jinxu Zhang, Jian Sun and Gengxiang Hu, Intermetallics 2000, vol. 8, pp. 1251-1256.Google Scholar
  36. 36.
    Sandra Korte-Kerzel, MRS Communications 2017, vol. 7, pp. 109-120.Google Scholar
  37. 37.
    K. S. Ng and A. H. W. Ngan, Scripta Mater 2008, vol. 59, pp. 796-799.Google Scholar
  38. 38.
    Julia R. Greer and William D. Nix, Physical Review B 2006, vol. 73, p. 245410.Google Scholar
  39. 39.
    S. I. Rao, D. M. Dimiduk, T. A. Parthasarathy, M. D. Uchic, M. Tang and C. Woodward, Acta Mater 2008, vol. 56, pp. 3245-3259.Google Scholar
  40. 40.
    Triplicane A. Parthasarathy, Satish I. Rao, Dennis M. Dimiduk, Michael D. Uchic and Dallas R. Trinkle, Scripta Mater 2007, vol. 56, pp. 313-316.Google Scholar
  41. 41.
    Chawla N. and Shen Y.-L., Adv. Eng. Mater. 2001, vol. 3, pp. 357-370.Google Scholar
  42. 42.
    Hanry Yang, Lin Jiang, Martin Balog, Peter Krizik and Julie M. Schoenung, Metallurgical and Materials Transactions A 2017, vol. 48, pp. 4385-4392.Google Scholar
  43. 43.
    Shanmugasundaram Thangaraju, Martin Heilmaier, Budaraju Srinivasa Murty and Subramanya Sarma Vadlamani, Adv. Eng. Mater. 2012, vol. 14, pp. 892-897.Google Scholar
  44. 44.
    V. C. Nardone and K. M. Prewo, Scripta Metallurgica 1986, vol. 20, pp. 43-48.Google Scholar
  45. 45.
    Geoffrey Ingram Taylor, Proceedings of the Royal Society of London. Series A 1934, vol. 145, pp. 362-87.Google Scholar
  46. 46.
    Chang-Soo Kim, Kyu Cho, Mohsen H. Manjili and Marjan Nezafati, Journal of Materials Science 2017, vol. 52, pp. 13319-13349.Google Scholar
  47. 47.
    J. Zhang, J. Y. Wang and Y. C. Zhou, Acta Mater 2007, vol. 55, pp. 4381-4390.Google Scholar
  48. 48.
    Ting Sun, Xiaozhi Wu, Rui Wang, Weiguo Li and Qing Liu, Comp Mater Sci 2017, vol. 126, pp. 108-120.Google Scholar
  49. 49.
    M. X. Zhang, P. M. Kelly, M. A. Easton and J. A. Taylor, Acta Mater 2005, vol. 53, pp. 1427-1438.Google Scholar
  50. 50.
    L. E. Murr: Interfacial phenomena in metals and alloys. (Addison-Wesley Publishing Company, United States, 1975).Google Scholar
  51. 51.
    Hui Zhang, Xiaohui Wang, Zhaojin Li and Yanchun Zhou, Journal of Materials Research 2014, vol. 29, pp. 1113-1121.Google Scholar
  52. 52.
    R. Yu, L. L. He and H. Q. Ye, Acta Mater 2003, vol. 51, pp. 2477-2484.Google Scholar
  53. 53.
    Michael D. Uchic, Dennis M. Dimiduk, Jeffrey N. Florando and William D. Nix, Science 2004, vol. 308.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Zuqi Hu
    • 1
    • 2
    Email author
  • Chezheng Cao
    • 3
  • Marta Pozuelo
    • 1
  • Maximilian Sokoluk
    • 3
  • Jenn-Ming Yang
    • 1
  • Xiaochun Li
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Institute of MaterialsChina Academy of Engineering PhysicsJiangyouChina
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations