Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4506–4512 | Cite as

Documenting Ferrite Nucleation Behavior Differences in the Heat-Affected Zones of EH36 Shipbuilding Steels with Mg and Zr Additions

  • Xiaodong Zou
  • Jincheng Sun
  • Hiroyuki Matsuura
  • Cong WangEmail author


The nucleation behavior of ferrites in the heat-affected zones of EH36-Mg and EH36-Zr shipbuilding steels has been documented. Ferrite laths preferred to nucleate on the surface of Al-Mg-Ti-O-Mn-S inclusions in EH36-Mg, but austenite grain boundaries in EH36-Zr, respectively. It is speculated that Al-Mg-Ti-O-Mn-S provides more effective ferrite nucleation sites than Zr-O-Mn-S-Ca-Mg, and a larger driving force is required for the transformation on Zr-O-Mn-S-Ca-Mg. Such differences led to significant variations of the resultant microstructures.


The authors gratefully acknowledge the support from the National Natural Science Foundation of China (51622401, 51628402, 51861130361, 51861145312, and 51850410522), Newton Advanced Fellowship by Royal Society (RP12G0414), Research Fund for Central Universities (N172502004), National Key Research and Development Program of China (2016YFB0300602), and Global Talents Recruitment Program endowed by the Chinese Government for their financial support. We also thank State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (SKLSP201805). X.Z. also appreciates the financial aid from the China Scholarship Council (No. 201806080143) and Chinese Association for Science and Technology.

Supplementary material

Supplementary material 1 (MP4 35510 kb)

Supplementary material 2 (MP4 35153 kb)


  1. 1.
    W.M. Garrison, A.L. Wojcieszynski: Mater. Sci. Eng. A 2007, vol. 464, pp. 321-329.CrossRefGoogle Scholar
  2. 2.
    G.M. Faulring and S. Ramalingam: Metall. Trans. A, 1979, vol. 10, pp. 1781-1788.CrossRefGoogle Scholar
  3. 3.
    Y. Kang, K. Han, J.H. Park and C. Lee: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3581-3591.CrossRefGoogle Scholar
  4. 4.
    C. Wang, R.D.K. Misra, M.H. Shi, P.Y. Zhang, Z.D. Wang, F.X. Zhu and G.D. Wang: Mater. Sci. Eng. A, 2014, vol. 594, pp. 218-228.CrossRefGoogle Scholar
  5. 5.
    H. Suito, A.V. Karasev, M. Hamada, R. Inoue and K. Nakajima: ISIJ Int., 2011, vol. 51, pp. 1151-1162.CrossRefGoogle Scholar
  6. 6.
    C.K. Lin, Y.C. Pan, Y.H.F. Su, G.R. Lin, W.S. Hwang and J.C. Kuo: Mater. Charact., 2018, vol. 141, pp. 318-327.CrossRefGoogle Scholar
  7. 7.
    L. Xu, J. Yang, R. Wang, Y. Wang and W. Wang: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3354-3364.CrossRefGoogle Scholar
  8. 8.
    F.R. Xiao, B. Liao, Y.Y. Shan, G.Y. Qiao, Y. Zhong, C. Zhang and K. Yang: Mater. Sci. Eng. A, 2006, vol. 431, pp. 41-52.CrossRefGoogle Scholar
  9. 9.
    S. Ogibayashi: Nippon Steel Tech. Rep., 1994, pp. 70–76.Google Scholar
  10. 10.
    J.S. Byun, J.H. Shim, Y.W. Cho and D.N. Lee: Acta Mater., 2003, vol. 51, pp. 1593-1606.CrossRefGoogle Scholar
  11. 11.
    B. Wang, X. Liu and G. Wang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2124-2138.CrossRefGoogle Scholar
  12. 12.
    J. Sun, X. Zou, H. Matsuura and C. Wang: JOM, 2018, vol. 70, pp. 946-950.CrossRefGoogle Scholar
  13. 13.
    X. Zou, J. Sun, H. Matsuura and C. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2168-2173.CrossRefGoogle Scholar
  14. 14.
    A. Guo, S. Li, J. Guo, P. Li, Q. Ding, K. Wu and X. He: Mater. Charact., 2008, vol. 59, pp. 134-139.CrossRefGoogle Scholar
  15. 15.
    D. Zhang, H. Terasaki and Y.I. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-1378.CrossRefGoogle Scholar
  16. 16.
    X.L. Wan, K.M. Wu, K.C. Nune, Y. Li and L. Cheng: Sci. Technol. Weld. Joi., 2015, vol. 20, pp. 254-263.CrossRefGoogle Scholar
  17. 17.
    Q. Wang, X. Zou, H. Matsuura and C. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 18-22.CrossRefGoogle Scholar
  18. 18.
    J. Pak, D.W. Suh and H. Bhadeshia: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4520-4524.CrossRefGoogle Scholar
  19. 19.
    L. Cheng and K. Wu: Acta Mater., 2009, vol. 57, pp. 3754-3762.CrossRefGoogle Scholar
  20. 20.
    G. Mao, R. Cao, X. Guo, Y. Jiang and J. Chen: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5793-5798.Google Scholar
  21. 21.
    M. Minagawa, K. Ishida, Y. Funatsu and S. Imai: Nippon Steel Tech. Rep., 2004, pp. 6–8.Google Scholar
  22. 22.
    X. Zou, J. Sun, D. Zhao, H. Matsuura and C. Wang: J. Iron Steel Res. Int., 2018, vol. 25, pp. 164-172.CrossRefGoogle Scholar
  23. 23.
    X. Zou, D. Zhao, J. Sun, C. Wang and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49, pp. 481-489.CrossRefGoogle Scholar
  24. 24.
    N.N. Rykalin: in 42nd Annual Meeting of the American Welding Society, Moscow, 1960, pp. 4–16Google Scholar
  25. 25.
    X. Wan, K. Wu, L. Cheng and R. Wei: ISIJ Int., 2015, vol. 55, pp. 679-685.CrossRefGoogle Scholar
  26. 26.
    M.E. Story and B.A. Webler: ISIJ Int., 2017, vol. 57, pp. 1468-1475.CrossRefGoogle Scholar
  27. 27.
    D. Zhang, Y. Shintaku, S. Suzuki and Y.-I. Komizo: Metall. Mater. Trans. A, 2012, vol. 43, pp. 447-458.CrossRefGoogle Scholar
  28. 28.
    H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A, 1990, vol. 21, pp. 767-797.CrossRefGoogle Scholar
  29. 29.
    S. Zajac, V. Schwinn and K.H. Tacke: Mater. Sci. Forum, 2005, vol. 500-501, pp. 387-394.CrossRefGoogle Scholar
  30. 30.
    F. Caballero, H. Roelofs, S. Hasler, C. Capdevila, J. Chao, J. Cornide and C. Garcia-Mateo: Mater. Sci. Technol., 2012, vol. 28, pp. 95-102.CrossRefGoogle Scholar
  31. 31.
    K. Zhu, O. Bouaziz, C. Oberbillig and M. Huang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6614-6619.CrossRefGoogle Scholar
  32. 32.
    K. Peng, C. Yang, C. Fan and S. Lin: Sci. Technol. Weld. Joi., 2018, vol. 23, pp. 158-163.CrossRefGoogle Scholar
  33. 33.
    A. Lambert-Perlade, A.F. Gourgues and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337-2348.CrossRefGoogle Scholar
  34. 34.
    M. Díaz-Fuentes, A. Iza-Mendia and I. Gutiérrez: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2505-2516.CrossRefGoogle Scholar
  35. 35.
    B. Hwang, Y.G. Kim, S. Lee, Y.M. Kim, N.J. Kim and J.Y. Yoo: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2107-2114.CrossRefGoogle Scholar
  36. 36.
    Y. Hou, W. Zheng, Z. Wu, G. Li, N. Moelans, M. Guo and B.S. Khan: Acta Mater., 2016, vol. 118, pp. 8-16.CrossRefGoogle Scholar
  37. 37.
    B. Zhou, G. Li, X. Wan, Y. Li and K. Wu: Met. Mater. Int., 2016, vol. 22, pp. 267-275.CrossRefGoogle Scholar
  38. 38.
    J. Pu, S. Yu and Y. Li: J. Alloys Compd., 2017, vol. 692, pp. 351-358.CrossRefGoogle Scholar
  39. 39.
    Y. Li, X. Wan, L. Cheng and K. Wu: Scripta Mater., 2014, vol. 75, pp. 78-81.CrossRefGoogle Scholar
  40. 40.
    S.S. Babu: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 267-278.CrossRefGoogle Scholar
  41. 41.
    R. Ricks, P. Howell and G. Barritte: J. Mater. Sci., 1982, vol. 17, pp. 732-740.CrossRefGoogle Scholar
  42. 42.
    Y. Li, X. Wan, L. Cheng and K. Wu: Mater. Sci. Technol., 2016, vol. 32, pp. 88-93.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xiaodong Zou
    • 1
    • 2
  • Jincheng Sun
    • 1
  • Hiroyuki Matsuura
    • 2
  • Cong Wang
    • 1
    Email author
  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China
  2. 2.Department of Materials EngineeringThe University of TokyoTokyoJapan

Personalised recommendations