Skip to main content
Log in

Estimation of the Temperature in the Stirred Zone and Cooling Rate of Friction Stir Welding of EH46 Steel from TiN Precipitates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Measuring the peak temperature in the contact region of the tool/workpiece in friction stir welding (FSW) is difficult using conventional methods such as use of thermocouples or a thermal imaging camera, hence an alternative method is required to tackle this problem. The objective of the present work was to estimate more accurately, for the first time, the peak temperature and cooling rate of FSW from precipitation of TiN in friction stir-welded steel samples. Microstructures of nine friction stir-welded samples of high-strength shipbuilding steel of EH46 grade were examined closely by SEM-EDS to detect the TiN precipitates. Thermal heat treatments using an accurate electrical digital furnace were also carried out on 80 unwelded EH46 steel samples over a range of temperatures and cooling rates. Heat treatments were to create a basis to understand TiN precipitation behavior under various heating and cooling regimes for the studied alloy. Heat treatment showed that TiN particles can precipitate at a peak temperature exceeding 1000 °C and the size of TiN precipitate particles increases with decreasing cooling rate. In a temperature range between 1100 °C and 1200 °C, the TiN precipitates were accompanied by other elements such as Nb, S, Al, and V. Pure TiN particles were found after the peak temperature exceeded 1250 °C with limited precipitation after reaching a peak temperature of 1450 °C. The comparison between the friction stir welding samples and the heat treatments in terms of types and sizes of TiN precipitates suggests that the welding peak temperature should have been in the range of 1200 °C and 1350 °C with a cooling rate in the range of 20 to 30 K/s. The current work represents a step change in estimating the friction stir welding temperature and cooling rate which are difficult to determine using thermocouples and thermal imaging camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Friction Stir Butt Welding, International Patent No. PCT/GB92/02203, 1991.

  2. S.A. Hussein, S. Thiru, R. Izamshah and A.S.M.D. Tahir: Advances in Mat. Sci. & Eng., 2014, 8 pages.

  3. 3. P. Carlone and G.S. Palazzo: Metallogr. Microstruct. Anal., 2013, vol. 2, pp. 213-222.

    Article  CAS  Google Scholar 

  4. 4. J. Mezyk and S. Kowieski: Solid State Phenomena, 2015, vol. 220-221, pp. 859-863.

    Article  Google Scholar 

  5. 5. Z.H. Zhang, W.Y. Li, J.L. Li and Y.J. Chao: Int. J. Adv. Manuf. Technol., 2014, vol. 73, pp. 1213-1218.

    Article  Google Scholar 

  6. 6. A. Arora, T. DebRoy and K.H.D.H. Bhadeshia: Acta Mater., 2011, vol. 59, pp. 2020-2028.

    Article  CAS  Google Scholar 

  7. 7. L. Wang, C.M. Davies, R.C. Wimpory, L.Y. Xie and K.M. Nikbin: Materials at High Temperature, 2010, vol. 27, pp. 167-178.

    Article  CAS  Google Scholar 

  8. J Stock, CM Enloe, RJ OMalley, KO Findley (2014) AIST Trans. 11:180-186.

    Google Scholar 

  9. 9. M.T. Nagata, J.G. Speer and D.K. Matlock: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3099-3110.

    Article  CAS  Google Scholar 

  10. KA El-Fawakhry, MF Mekkawy, ML Mishreky, MM Eissa (1991) ISIJ Int. 31: 1020-1025.

    Article  CAS  Google Scholar 

  11. 11. M.L. Wang, G.G. Cheng, S.T. Qiu, P. Zhao, and Y. Gan: International Journal of Minerals, Metallurgy and Materials, 2010, vol.17, pp. 276-281.

    Article  CAS  Google Scholar 

  12. 12. S.G. Hong, H.J Jun, K.B. Kang and C.G. Park: Scr. Mater., 2003, vol. 48, pp. 1201–1206.

    Article  CAS  Google Scholar 

  13. D.M. Failla: Friction Stir Welding and Microstructure Simulation of HSLA-65 and Austenitic Stainless Steels, MSc Thesis, The Ohio State University, 2009.

  14. 14. S.F. Medina, A. Quispe and M. Gomez: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1524–1539.

    Article  Google Scholar 

  15. Z.H. Zhu and S.T. Qiu (2012) Adv. Mater. Res. 535:633-638.

    Article  Google Scholar 

  16. 16. P. Gong, E.J. Palmiere and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp. 392-403.

    Article  CAS  Google Scholar 

  17. 17. L.J. Cuddy: “The Effect of Microalloy Concentration on the Recrystallization of Austenite During Hot Deformation”, In: A. J. DeArdo, G. A. Ratz, and P. J. Wray, eds. Thermomechanical processing of microalloyed austenite. Pittsburgh, USA: TMS-AIME, 1981: 129-140.

    Google Scholar 

  18. 18. J. Fernández, S. Illescas and J.M. Guilemany: Mater. Letters, 2007, vol. 61, pp. 2389–2392.

    Article  Google Scholar 

  19. 19. A. Karmakar, S. Kundu, S. Roy, S. Neogy, D. Srivastava and D. Chakrabarti: Mater. Sci. Tech., 2014, vol. 30, pp. 653-664.

    Article  CAS  Google Scholar 

  20. 20. J. Kunze, C. Mickel, G. Backmann, B. Beyer, M. Reibold, C. Klinkenberg, Steel Research, 1997, vol. 68 (10), pp. 441-449.

    Article  CAS  Google Scholar 

  21. 21. T-P Qu, J. Tian, K-I Chen, Z Xu, D-Y Wang: Ironmaking & Steelmaking, 2019, vol. 46 (4), pp. 353-358.

    Article  CAS  Google Scholar 

  22. 22. S.F. Di Martino and G. Thewlis: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 579-594.

    Article  Google Scholar 

  23. 23. A.J. DeArdo: International Materials Reviews, 2003, vol. 48, pp. 371–402.

    Article  CAS  Google Scholar 

  24. G Stein, W Kirschner, J Lueng (1997) Application of nitrogen-alloyed martensitic stainless steels in the aviation industry. In: E.G. Nisbett and A.S. Melilli (eds) Steel Forgings: Second Volume. ASTM Special Technical Publication, Warrendale, PA, pp. 104-115.

    Chapter  Google Scholar 

  25. 25. T. Shiraiwa and N. Fujino, “Electron Probe Microanalysis of Ti(C, N) and Zr(C, N) in Steel”, 1969, In: Möllenstedt G., Gaukler K.H. (eds) Vth International Congress on X-Ray Optics and Microanalysis, Springer, Berlin, Heidelberg, pp 531-534.

    Google Scholar 

  26. 26. M. Hua, C.I. Garcia, and A.J. DeArdo: Metall. Mat. Trans. A, 1997, vol. 28A, pp. 1769-80.

    Article  CAS  Google Scholar 

  27. 27. H. Schmidt and J. Hattel: Modelling and Simulation in Materials Science and Engineering, 2005, vol. 13, pp.77–93.

    Article  Google Scholar 

  28. 28. H.B. Schmidt and J.H. Hattel: Scri. Mater., 2008, vol. 58, pp.332–337.

    Article  CAS  Google Scholar 

  29. 29. P.A. Colegrove, H.R. Shercliff and R. Zettler: Science and Technology of Welding and Joining, 2007, vol. 12, pp. 284-297.

    Article  CAS  Google Scholar 

  30. R.K. Gibbs, R.C. Peterson, and B.A. Parker: Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, Iron and Steel Society, Warrendale, PA, 1992, pp. 201–07.

  31. 31. S. Matsuda and K. Okumura: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p. 198.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank The Welding Institute (TWI) Yorkshire for providing FSW samples of steel and related operational data. They also thank Mr Stuart Creasy at Sheffield Hallam University for helping in obtaining clear SEM images at high magnification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Faraji.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-moussawi, M., Smith, A.J., Faraji, M. et al. Estimation of the Temperature in the Stirred Zone and Cooling Rate of Friction Stir Welding of EH46 Steel from TiN Precipitates. Metall Mater Trans A 50, 5103–5116 (2019). https://doi.org/10.1007/s11661-019-05383-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05383-x

Navigation