Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4541–4549 | Cite as

Comprehensive Analysis of the Effect of Ausforming on the Martensite Start Temperature in a Fe-C-Mn-Si Medium-Carbon High-Strength Bainite Steel

  • Junyu Tian
  • Guanghui Chen
  • Yaowen XuEmail author
  • Zhengyi Jiang
  • Guang XuEmail author
Article
  • 202 Downloads

Abstract

The comprehensive effect of strain and ausforming temperature on the martensite start temperature (MS) of a medium-carbon bainite steel was investigated by thermal simulation, optical microscope, scanning electron microscope, etc. It is already known that small strain increases the MS, while larger strain decreases the MS. However, the effect of ausforming temperature on the MS has not been reported and clarified. In this study, the concepts of critical strain (εc) and saturated strain (εs) are proposed. The MS at the critical strain is equal to the MS of the nondeformed specimen. The saturation strain, which is first observed, is the strain value, and the MS does not further decrease with the increasing strain. The results show that the MS depends on the strain amount of ausforming but is not affected by the ausforming temperature. Moreover, with the increase of strain amount and ausforming temperature, the length of the martensite laths decreases. In addition, the hardness of the specimen increases with the increase of the ausforming strain amount, whereas the ausforming temperature has little effect on the hardness.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51874216 and 51704217), the Major Projects of Technology Innovation of Hubei Province (Grant No. 2017AAA116), the Science and Technology Project of Wuhan (2018010402011187), the Hebei Joint Research Fund for Iron and Steel (E2018318013), the Youth Foundation of Wuhan University of Science and Technology (2015XZ002), the State Key Laboratory Science Foundation for Youths (2016QN10), and the State Scholarship Fund of China Scholarship Council.

Supplementary material

11661_2019_5376_MOESM1_ESM.docx (80 kb)
Supplementary material 1 (DOCX 80 kb)

References

  1. 1.
    H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu: Mater. Des., 2015, vol. 84, pp. 95–99.CrossRefGoogle Scholar
  2. 2.
    Y.X. Zhou, X.T. Song, J.W. Liang, Y.F. Shen, and R.D.K. Misra: Mater. Sci. Eng. A, 2018, vol. 718, pp. 267–76.CrossRefGoogle Scholar
  3. 3.
    J. Zhao, K. Guo, Y.M. He, Y.F. Wang, and T.S. Wang: Scripta Mater., 2018, vol. 152, pp. 20–23.CrossRefGoogle Scholar
  4. 4.
    G.H. Chen, G. Xu, H.S. Zurob, H.J. Hu, and X.L. Wan: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 573–80.CrossRefGoogle Scholar
  5. 5.
    C. García-mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: Mater. Sci. Forum, 2015, vol. 112, pp. 285–88.Google Scholar
  6. 6.
    F.G. Caballero, C. García-mateo, and M.K. Miller: JOM, 2014, vol. 66, pp. 747–55.CrossRefGoogle Scholar
  7. 7.
    F.G. Caballero, C. García-mateo, C. Capdevila, and C. García de Andrés: Mater. Manuf. Process., 2007, vol. 22, pp. 502–06.CrossRefGoogle Scholar
  8. 8.
    M. Maalekian, E. Kozeschnik, S. Chatterjee, and H.K.D.H. Bhadeshia: Met. Sci. J., 2007, vol. 23, pp. 610–12.Google Scholar
  9. 9.
    S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia: Met. Sci. Technol., 2006, vol. 22, pp. 641–44.CrossRefGoogle Scholar
  10. 10.
    J.R. Strife, M.J. Carr, and G.S. Ansell: Metall. Trans. A, 1976, vol. 8A, pp. 1471–84.Google Scholar
  11. 11.
    M. Zhang, Y.H. Wang, C.L. Zheng, F.Z. Zhang, and T.S. Wang: Mater. Des., 2014, vol. 62, pp. 168–74.CrossRefGoogle Scholar
  12. 12.
    M. Zhang, Y.H. Wang, C.L. Zheng, F.Z. Zhang, and T.S. Wang: Mater. Sci. Eng. A, 2014, vol. 596, pp. 9–14.CrossRefGoogle Scholar
  13. 13.
    T. Sadasue, S. Suzuki, M. Suwa, S. Mitao, and K. Takahashi: Mater. Sci. Forum, 2003, vol. 426, pp. 1493–98.CrossRefGoogle Scholar
  14. 14.
    T.S. Wang, M. Zhang, Y.H. Wang, J. Yang, and F.C. Zhang: Scripta Mater., 2013, vol. 68, pp. 162–65.CrossRefGoogle Scholar
  15. 15.
    B.B. He, W. Xu, and M.X. Huang: Mater. Sci. Eng. A, 2014, vol. 609, pp. 141–46.CrossRefGoogle Scholar
  16. 16.
    Y.C. Liu, D.J. Wang, F. Sommer, and E.J. Mittemeijer: Acta Mater., 2008, vol. 56, pp. 3833–42.CrossRefGoogle Scholar
  17. 17.
    H.J. Hu, G. Xu, L. Wang, M.X. Zhou, and Z.L. Xue: Metall. Mater. Int., 2015, vol. 21, pp. 929–35.CrossRefGoogle Scholar
  18. 18.
    L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1994, vol. 184, pp. 17–19.CrossRefGoogle Scholar
  19. 19.
    G. Xu, H. Zou, and C.H. Bu: Adv. Mater. Res., 2011, vol. 415, pp. 974–78.Google Scholar
  20. 20.
    J.G. He, A.M. Zhao, C. Zhi, and H.L. Fan: Scripta Mater., 2015, vol. 107, pp. 71–74.CrossRefGoogle Scholar
  21. 21.
    H.J. Hu, H.S. Zurob, G. Xu, D. Embury, and G.R. Purdy: Mater. Sci. Eng. A, 2015, vol. 626, pp. 34–40.CrossRefGoogle Scholar
  22. 22.
    H.J. Hu, G. Xu, L. Wang, and M.X. Zhou: Steel Res. Int., 2017, vol. 83, pp. 1–7.Google Scholar
  23. 23.
    G.H. Chen, G. Xu, H.J. Hu, Q. Yuan, and Q.X. Zhang: Steel Res. Int., 2018, vol. 89, pp. 1–5.Google Scholar
  24. 24.
    M.T. Todinov, J.F. Knott, and M. Strangwood: Acta Mater., 1996, vol. 44, pp. 4909–15.CrossRefGoogle Scholar
  25. 25.
    J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38.CrossRefGoogle Scholar
  26. 26.
    J.X. Wu, B.H. Jiang, and T.Y. Hsu: Acta Metall. Sinica, 1988, vol. 36, pp. 1521–26.CrossRefGoogle Scholar
  27. 27.
    Y. Tian, A. Borgenstam, and P. Hedström: J. Alloys Compd., 2018, vol. 766, pp. 131–39.CrossRefGoogle Scholar
  28. 28.
    X.D. Zhang, J.Q. Ren, and X.D. Ding: Appl. Compos. Mater., 2019, vol. 26, pp. 455–67.CrossRefGoogle Scholar
  29. 29.
    M. Eskandari, M.A. Mohtadi-Bonab, A. Zarei-Hanzaki, A.G. Odeshi, and J.A. Szpunar: J. Mater. Eng. Perform., 2016, vol. 25, pp. 1611–20.CrossRefGoogle Scholar
  30. 30.
    M.F. Ashby: Philos. Mag. A, 1970, vol. 21, pp. 399–24.CrossRefGoogle Scholar
  31. 31.
    A. Kundu and D.P. Field: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3274–82.CrossRefGoogle Scholar
  32. 32.
    T. Song and B.C.D. Cooman: ISIJ Int., 2014, vol. 54, pp. 2394–03.CrossRefGoogle Scholar
  33. 33.
    S. Dash and N. Brown: Acta Metall., 1966, vol. 14, pp. 595–03.CrossRefGoogle Scholar
  34. 34.
    L. Samek, E.D. Moor, J. Penning, and B.C.D. Cooman: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 109–124.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations