Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4877–4890 | Cite as

Effects of Combined Additions of Mn and Zr on Dispersoid Formation and Recrystallization Behavior in Al-Zn-Mg Alloys

  • Shengdan Liu
  • Jingchao Chen
  • Wenru Chai
  • Qing Wang
  • Zhenshen Yang
  • Lingying YeEmail author
  • Jianguo Tang


The effects of Mn or Zr additions on the dispersoid formation and recrystallization behavior in Al-Zn-Mg alloys were investigated. The combined additions of Mn and Zr are expected to increase the uniformity of dispersoids and increase the sizes of Al3Zr and Al6Mn dispersoids but decrease their volume fraction, which reduces the pinning force of dispersoids to grain boundaries. Al6Mn dispersoids are incoherent with the Al matrix and result in lower pinning force compared to that of Al3Zr dispersoids. Consequently, the inhibiting effect of combined additions of Mn and Zr on recrystallization is not as strong as that due to Zr addition alone. After hot rolling, the long axis of most ellipsoidal Al6Mn dispersoids tends to be parallel to the rolling direction (RD), resulting in a larger pinning force in the normal direction (ND) than in the RD; therefore, the aspect ratios of recrystallized grains are larger in Mn-containing alloys than in Mn-free alloys. Further, the addition of Mn in Al-Zn-Mg alloy can lead to coarse α-AlFeMnSi constituent particles and, therefore, a higher area fraction of second phase in Mn-containing alloys; as a result, particle-stimulated nucleation (PSN) is the dominant recrystallization mechanism in Mn-containing alloys, while both PSN and strain-induced grain boundary migration (SIBM) exist in Zr-containing alloys.



This work is supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300901), the Key Project of Science and Technology of Hunan Province (Grant No. 2016GK1004), and the Shenghua Yuying Project of Central South University (Grant No. 20130603).


  1. 1.
    S.D. Liu, X.M. Zhang, M.A. Chen, J.H. You, and X.Y. Zhang: Trans. Nonferr. Met. Soc., 2007, vol. 17, pp. 787–92.Google Scholar
  2. 2.
    Y. Deng, Z.M. Yin, K. Zhao, J.Q. Duan, and Z.B. He: J. Alloys Compd., 2012, vol. 530, pp. 71–80.Google Scholar
  3. 3.
    N.H. Lee, P.W. Kao, T.Y. Tseng, and J.R. Su: Mater. Sci. Eng. A, 2012, vol. 535, pp. 297–305.Google Scholar
  4. 4.
    S.H.S. Ebrahimi, M. Emamy, N. Pourkia, and H.R. Lashgari: Mater. Des., 2010, vol. 31, pp. 4450–56.Google Scholar
  5. 5.
    J.T.B. Gundersen, A. Aytaç, S. Ono, J.H. Nordlien, and K. Nişancıoğlu: Corros. Sci., 2004, vol. 46, pp. 265–83.Google Scholar
  6. 6.
    Y.L. Wu, C. Li, F.H. Froes, and A. Alvarez: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1017–24.Google Scholar
  7. 7.
    Y.D. He, X.M. Zhang, and J.H. You: Trans. Nonferr. Met. Soc., 2006, vol. 16, pp. 1228–35.Google Scholar
  8. 8.
    S.P. Wen, W. Wang, W.H. Zhao, X.L. Wu, K.Y. Gao, H. Huang, and Z.R. Nie: J. Alloys Compd., 2016, vol. 687, pp. 143–51.Google Scholar
  9. 9.
    Y.B. Wang, Y. Lin, and J.M. Zeng: Adv. Mater. Res., 2010, vols. 146–147, pp. 1874–77.Google Scholar
  10. 10.
    K.H. Chen, H.C. Fang, Z. Zhang, X. Chen, and G. Liu: Mater. Sci. Eng. A, 2008, vol. 497, pp. 426–31.Google Scholar
  11. 11.
    Y. Deng, Z.M. Yin, J.Q. Duan, K. Zhao, B. Tang, and Z.B. He: J. Alloys Compd., 2012, vol. 517, pp. 118–26.Google Scholar
  12. 12.
    J.D. Robson and P.B. Prangnell: Acta Mater., 2001, vol. 49, pp. 599–613.Google Scholar
  13. 13.
    K.P. Mingard, B. Cantor, I.G. Palmer, I.R. Hughes, P.W. Alexander, T.C. Willis, and J. White: Acta Mater., 2000, vol. 48, pp. 2435–49.Google Scholar
  14. 14.
    Z.H. Jia, G.Q. Hu, B. Forbord, and J.K. Solberg: Mater. Sci. Eng. A, 2007, vol. 444, pp. 284–90.Google Scholar
  15. 15.
    Y.J. Li, W.Z. Zhang, and K. Marthinsen: Acta Mater., 2012, vol. 60, pp. 5963–74.Google Scholar
  16. 16.
    B.O. Kong and S.W. Nam: Mater. Lett., 1996, vol. 28, pp. 385–91.Google Scholar
  17. 17.
    E. Anselmino, A. Miroux, and S.V.D. Zwaag: Mater. Charact., 2004, vol. 52, pp. 289–300.Google Scholar
  18. 18.
    K. Osamura, K. Kohno, H. Okuda, S. Ochiai, J. Kusui, K. Fujii, K. Yokoe, T. Yokota, and K. Hono: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1829–34.Google Scholar
  19. 19.
    S.P. Dong and S.W. Nam: Mater. Lett., 1994, vol. 13, pp. 716–18.Google Scholar
  20. 20.
    P. Ratchev and P. Jessner: Mater. Sci. Forum, 2014, vols. 794–796, pp. 1227–32.Google Scholar
  21. 21.
    I. Nikulin, A. Kipelova, S. Malopheyev, and R. Kaibyshev: Acta Mater., 2012, vol. 60, pp. 487–97.Google Scholar
  22. 22.
    R. Hu, T. Ogura, H. Tezuka, T. Sato, and Q. Liu: J. Mater. Sci. Technol., 2010, vol. 26, pp. 237–43.Google Scholar
  23. 23.
    Y.B. Kim, Y.H. Chung, K.K. Cho, and M.C. Shin: Scripta Mater., 1997, vol. 36, pp. 111–16.Google Scholar
  24. 24.
    K. Kannan, J.S. Vetrano, and C.H. Hamilton: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2947–57.Google Scholar
  25. 25.
    R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Progr. Mater. Sci., 2008, vol. 53, pp. 421–80.Google Scholar
  26. 26.
    J.A. Walsh, K.V. Jata, and E.A. Starke: Acta Metall., 1989, vol. 37, pp. 2861–71.Google Scholar
  27. 27.
    S.W. Cheong and H. Weiland: Mater. Sci. Forum, 2007, vols. 558–559, pp. 153–58.Google Scholar
  28. 28.
    D. Tsivoulas, J.D. Robson, C. Sigli, and P.B. Prangnell: Acta Mater., 2012, vol. 60, pp. 5245–59.Google Scholar
  29. 29.
    C. Qin, G.Q. Gou, X.L. Che, H. Chen, J. Chen, P. Li, and W. Gao: Mater. Des., 2016, vol. 91, pp. 278–85.Google Scholar
  30. 30.
    G. Gou, M. Zhang, H. Chen, J. Chen, P. Li, and Y.P. Yang: Mater. Des., 2015, vol. 85, pp. 309–17.Google Scholar
  31. 31.
    T. Dursun and C. Soutis: Mater. Des., 2014, vol. 56, pp. 862–71.Google Scholar
  32. 32.
    J.C. Williams and E.A. Starke, Jr.: Acta Mater., 2003, vol. 51, pp. 5775–99.Google Scholar
  33. 33.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102–07.Google Scholar
  34. 34.
    H.C. Fang, H. Chao, and K.H. Chen: J. Alloys Compd., 2015, vol. 622, pp. 166–73.Google Scholar
  35. 35.
    C. Krishnan, A.K. Kobylecky, and J.R. Kish: Can. Metall. Q., 2015, vol. 54, pp. 349–58.Google Scholar
  36. 36.
    B. Li, Q.L. Pan, X. Huang, and Z. Yin: Mater. Sci. Eng. A, 2014, vol. 616, pp. 219–28.Google Scholar
  37. 37.
    N.M. Han, X.M. Zhang, S.D. Liu, D.G. He, and R. Zhang: J. Alloys Compd., 2011, vol. 509, pp. 4138–45.Google Scholar
  38. 38.
    S.D. Liu, W.J. Liu, Y. Zhang, X.M. Zhang, and Y.L. Deng: J. Alloys Compd., 2010, vol. 507, pp. 53–61.Google Scholar
  39. 39.
    F.S. Lin and E.A. Starke, Jr.: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41.Google Scholar
  40. 40.
    H. Yamada and T. Tanaka: J. Jpn. Inst. Light Met., 1989, vol. 39, pp. 32–37.Google Scholar
  41. 41.
    Y. Miyata and S. Yoshihara: 6th Int. Conf. on Aluminum Alloys, 2012, pp. 1897–1902.Google Scholar
  42. 42.
    A. Godfrey, W.C. Cao, Q. Liu, and N. Hansen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2371–78.Google Scholar
  43. 43.
    A. Lens, C. Maurice, and J.H. Driver: Mater. Sci. Forum, 2004, vols. 467–470, pp. 771–76.Google Scholar
  44. 44.
    M.F. Ashby: Philos. Mag., 1966, vol. 14, pp. 1157–78.Google Scholar
  45. 45.
    A.R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 717–28.Google Scholar
  46. 46.
    W.C. Yang, S.H. Ji, X.R. Zhou, I. Stone, G. Scamans, G.E. Thompson, and Z.Y. Fan: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3971–80.Google Scholar
  47. 47.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, United Kingdom, 2004, pp. 250–306.Google Scholar
  48. 48.
    B. Bay and N. Hansen: Metall. Trans. A, 1979, vol. 10A, pp. 279–88.Google Scholar
  49. 49.
    F.J. Humphreys: Acta Mater., 1977, vol. 25, pp. 1323–44.Google Scholar
  50. 50.
    O. Engler, P. Yang, and X.W. Kong: Acta Mater., 1996, vol. 44, pp. 3349–69.Google Scholar
  51. 51.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul-Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.Google Scholar
  52. 52.
    Y.Y. Zhang and J.S. Zhang: Mater. Lett., 2011, vol. 65, pp. 1856–58.Google Scholar
  53. 53.
    S. Raveendra, H. Paranjape, S. Mishra, H. Weiland, R.D. Doherty, and I. Samajdar: Mater. Sci. Eng. A, 2009, vol. 40, pp. 2220–30.Google Scholar
  54. 54.
    P. Bate and B. Hutchinson: Scripta Mater., 1997, vol. 36, pp. 195–98.Google Scholar
  55. 55.
    J. Sidor, A. Miroux, R. Petrov, and L. Kestens: Acta Mater., 2008, vol. 56, pp. 2495–2507.Google Scholar
  56. 56.
    B.O. Kong, J.I. Suk, and S.W. Nam: J. Mater. Sci. Lett., 1996, vol. 15, pp. 763–66.Google Scholar
  57. 57.
    Y.L. Deng, Y.Y. Zhang, L. Wan, A.A. Zhu, and X.M. Zhang: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2470–77.Google Scholar
  58. 58.
    H.Q. Lin, L.Y. Ye, L. Sun, T. Xiao, S.D. Liu, Y.L. Deng, and X.M. Zhang: Trans. Nonferr. Met. Soc., 2018, vol. 28, pp. 829–38.Google Scholar
  59. 59.
    M. Vlach, I. Stulíková, B. Smola, H. Císařová, T. Kekule, J. Malek, D. Tanprayoon, and V. Neubert: Def. Diffus. Forum, 2013, vols. 334–335, pp. 161–66.Google Scholar
  60. 60.
    J.D. Robson: Mater. Sci. Eng. A, 2002, vol. 338, pp. 219–29.Google Scholar
  61. 61.
    T. Ohashi, L. Dai, and N. Fukatsu: Metall. Trans. A, 1986, vol. 17A, pp. 799–806.Google Scholar
  62. 62.
    R. Kaibyshev, F. Musin, D.R. Lesuer, and T.G. Nieh: Mater. Sci. Eng. A, 2003, vol. 342, pp. 169–77.Google Scholar
  63. 63.
    J.D. Robson and P.B. Prangnell: Mater. Sci. Technol., 2002, vol. 18, pp. 607–14.Google Scholar
  64. 64.
    A. Deschampls and Y. Brechet: Mater. Sci. Eng. A, 1998, vol. 251, pp. 200–07.Google Scholar
  65. 65.
    K. Huang, O. Engler, Y.J. Li, and K. Marthinsen: Mater. Sci. Eng. A, 2015, vol. 628, pp. 216–29.Google Scholar
  66. 66.
    O. Engler: Scripta Mater., 1997, vol. 37, pp. 1675–83.Google Scholar
  67. 67.
    C.S. Smith: Trans. Am. Inst. Min. Eng., 1948, vol. 175, pp. 15–51.Google Scholar
  68. 68.
    P.A. Manohar, M. Ferry, and T. Chandra: ISIJ. Int., 1998, vol. 38, pp. 913–24.Google Scholar
  69. 69.
    K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé: Progr. Mater. Sci., 2018, vol. 92, pp. 284–359.Google Scholar
  70. 70.
    K. Huang and R.E. Logé: Reference Module in Materials Science and Materials Engineering, Elsevier, Oxford, United Kingdom, 2016, pp. 1–8.Google Scholar
  71. 71.
    E. Nes, N. Ryum, and O. Hunderi: Acta Metall., 1985, vol. 33, pp. 11–22.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Shengdan Liu
    • 1
    • 2
    • 3
  • Jingchao Chen
    • 1
    • 2
  • Wenru Chai
    • 1
    • 2
  • Qing Wang
    • 1
    • 2
  • Zhenshen Yang
    • 1
    • 2
  • Lingying Ye
    • 1
    • 2
    • 3
    Email author
  • Jianguo Tang
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Non-ferrous Metals Science and Engineering, Ministry of EducationChangshaChina
  3. 3.Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation CenterChangshaChina

Personalised recommendations