Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4851–4866 | Cite as

Stacking Fault Energy of Austenite Phase in Medium Manganese Steel

  • Avanish K. Chandan
  • G. Mishra
  • B. Mahato
  • S. G. Chowdhury
  • S. Kundu
  • J. ChakrabortyEmail author
Article
  • 296 Downloads

Abstract

The stacking fault energy (SFE) of the austenite phase in a medium manganese steel (Fe-4.75Mn-0.18C-0.8Si-0.4Al wt pct) has been determined by X-ray diffraction (XRD) using the modified Reed–Schramm formalism. SFE determination involved XRD line broadening analysis of mean square strain due to dislocations and calculation of stacking fault probability (SFP) from the analysis of diffraction peak shift due to both stacking faults and residual stress in the deformed austenite phase. Determination of SFP revealed a significant change in the separation between two neighboring peak reflections (111 and 200) due to compressive residual stress as compared to the corresponding change in peak separation due to stacking faults. Obtained SFE values were found to vary from 9 to 20 mJ m−2 for the deformed specimens, annealed at an intercritical temperature for different durations for austenite stabilization prior to deformation. SFP determination neglecting residual stress led to a significant decrease in the SFE value of the austenite phase. Dislocations in deformed austenite phase were predominantly \( \langle 110\rangle \{ 111\} \) edge type, and dislocation density was of the order of 1015 m−2. Both XRD and transmission electron microscopy observations suggested twinning-induced plasticity as the prevalent mode of deformation of austenite phase having an SFE value of ~ 20 mJ m−2, whereas transformation-induced plasticity was found to be the major deformation mode for the specimen having an SFE value of ~ 9 mJ m−2.

Notes

Acknowledgments

Tata Steel Ltd. is gratefully acknowledged for the full financial support to carry out the present work. The authors are indebted to Dr. Jeno Gubicza, Dr. Mainak Ghosh and Dr. Partha Chatterjee for many useful discussions related to the CMWP program and various microstructural aspects.

References

  1. 1.
    1 Y.-K. Lee and J. Han: Mater. Sci. Technol., 2015, vol. 31, pp. 843–56.Google Scholar
  2. 2.
    2 M. Zhang, L. Li, J. Ding, Q. Wu, Y.D. Wang, J. Almer, F. Guo, and Y. Ren: Acta Mater., 2017, vol. 141, pp. 294–303.Google Scholar
  3. 3.
    3 B. Hu, H. Luo, F. Yang, and H. Dong: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1457–64.Google Scholar
  4. 4.
    4 R.L. Miller: Metall. Trans., 1972, vol. 3, pp. 905–12.Google Scholar
  5. 5.
    5 H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, and H. Dong: Acta Mater., 2011, vol. 59, pp. 4002–14.Google Scholar
  6. 6.
    6 P.J. Gibbs, E.D.E. Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Met. Mater. Trans. A., 2011, vol. 42, pp. 3691–702.Google Scholar
  7. 7.
    7 G.K. Bansal, D.A. Madhukar, A.K. Chandan, K. Ashok, G.K. Mandal, and V.C. Srivastava: Mater. Sci. Eng. A, 2018, vol. 733, pp. 246–56.Google Scholar
  8. 8.
    8 S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5018–24.Google Scholar
  9. 9.
    9 W. Cao, C. Wang, C. Wang, J. Shi, M. Wang, H. Dong, and Y. Weng: Sci. China Technol. Sci., 2012, vol. 55, pp. 1814–22.Google Scholar
  10. 10.
    10 J.I. Kim, C.K. Syn, and J.W. Morris: Metall. Trans. A, 1983, vol. 14, pp. 93–103.Google Scholar
  11. 11.
    11 A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3076–90.Google Scholar
  12. 12.
    12 O. Matsumura, Y. Sakuma, and H. Takechi: Scr. Metall., 1987, vol. 21, pp. 1301–10.Google Scholar
  13. 13.
    13 S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2004, vol. 52, pp. 2765–78.Google Scholar
  14. 14.
    14 C. Herrera, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 4653–64.CrossRefGoogle Scholar
  15. 15.
    15 O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.Google Scholar
  16. 16.
    16 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.Google Scholar
  17. 17.
    17 B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.Google Scholar
  18. 18.
    18 V. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–9.Google Scholar
  19. 19.
    19 I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–62.Google Scholar
  20. 20.
    20 O. Grässel and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14, pp. 1213–7.Google Scholar
  21. 21.
    21 E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1223–33.Google Scholar
  22. 22.
    22 S. Curtze and V. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129–41.Google Scholar
  23. 23.
    23 S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 158–62.Google Scholar
  24. 24.
    24 Y-K Lee: Scripta Mater., 2012, vol. 66, pp. 1002–6.Google Scholar
  25. 25.
    25 K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue: ISIJ Int., 1989, vol. 29, pp. 868–77.Google Scholar
  26. 26.
    26 B.C. De Cooman, O. Kwon and K.-G. Chin: Mater. Sci. and Tech., 2012, vol. 28, pp. 513-27.Google Scholar
  27. 27.
    27 R.P. Reed and R.E. Schramm: J. Appl. Phys., 1974, vol. 45, pp. 4705–11.Google Scholar
  28. 28.
    28 R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.Google Scholar
  29. 29.
    Dey SN, Chatterjee P, Sen Gupta SP (2005) Acta Mater 53:4635–42Google Scholar
  30. 30.
    30 C.C. Bampton, I.P. Jones, and M.H. Loretto: Acta Metall., 1978, vol. 26, pp. 39–51.Google Scholar
  31. 31.
    Mahato B, Shee SK, Sahu T, Ghosh Chowdhury S, Sahu P, Porter DA, Karjalainen LP (2015) Acta Mater 86:69–79Google Scholar
  32. 32.
    32 D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig: Acta Mater., 2014, vol. 68, pp. 238–53.Google Scholar
  33. 33.
    33 L. Remy: Acta Metall., 1977, vol. 25, pp. 173–9.Google Scholar
  34. 34.
    Lee SJ, Jung YS, Il Baik S, Kim YW, Kang M, Woo W, Lee YK (2014) Scripta Mater 92:23–26Google Scholar
  35. 35.
    35 L. Balogh, G. Ribárik, and T. Ungár: J. Appl. Phys., 2006, vol. 100, pp. 023512-1–10.Google Scholar
  36. 36.
    Warren BE (1990) X-Ray Diffraction. Dover Publications, MineolaGoogle Scholar
  37. 37.
    37 B.E. Warren and E.P. Warekois: Acta Metall., 1955, vol. 3, pp. 473–9.Google Scholar
  38. 38.
    38 J.W.L. Pang, T.M. Holden and T.E. Mason: Acta Mater., 1998, vol. 46, No.5, pp.1503-18.Google Scholar
  39. 39.
    Noyan IC, Cohen JB (1987) Residual Stress: Measurement by Diffraction and Interpretation, 1st edn. Springer, New YorkGoogle Scholar
  40. 40.
    40 K. Van Acker, J. Root, P. Van Houtte and E. Aernoudt: Acta Mater., 1996, vol. 44, No. 10, pp. 4039-49.Google Scholar
  41. 41.
    41 P. Van Houtte and L. De Buyser: Acta metall. Mater., 1993, vol. 41, No. 2, pp. 323-36.Google Scholar
  42. 42.
    42 P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 366–75.Google Scholar
  43. 43.
    43 Y. Tomota, H. Tokuda, Y. Adachi, and M. Wakita: Acta Mater., 2004, vol. 52, pp. 5737–45.Google Scholar
  44. 44.
    44 S. Morooka, Y. Tomota, and T. Kamiyama: ISIJ Int., 2008, vol. 48, pp. 525–30.Google Scholar
  45. 45.
    45 T. Ungár, I. Dragomir, Á. Révész, and A. Borbély: J. Appl. Crystallogr., 1999, vol. 32, pp. 992–1002.Google Scholar
  46. 46.
    46 T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–5.Google Scholar
  47. 47.
    T. Ungár: Proc. Denver X-ray Conf. 1996, “Advances X-ray Anal”.Google Scholar
  48. 48.
    48 T. Ungár and G. Tichy: Phys. Status Solidi, 1999, vol. 171, pp. 425–34.Google Scholar
  49. 49.
    49 X. Tian, H. Li, and Y. Zhang: J Mater Sci, 2008, vol. 43, pp. 6214–22.Google Scholar
  50. 50.
    50 M. Kang, W. Woo, Y.-K. Lee, and B.-S. Seong: Mater. Lett., 2012, vol. 76, pp. 93–5.Google Scholar
  51. 51.
    51 J.E. Jin and Y.K. Lee: Acta Mater., 2012, vol. 60, pp. 1680–8.Google Scholar
  52. 52.
    52 J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, and Y.M. Koo: Acta Mater., 2012, vol. 60, pp. 2290–9.Google Scholar
  53. 53.
    53 G. Ribárik, J. Gubicza, and T. Ungár: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 343–7.Google Scholar
  54. 54.
    54 S. Lee, W. Woo, and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2125–40.Google Scholar
  55. 55.
    55 R. Adler, H. Otte, and C. Wagner: Metall. Trans., 1970, vol. 1, pp. 2375–82.Google Scholar
  56. 56.
    56 D. Rafaja, C. Krbetschek, C. Ullrich, and S. Martin: J. Appl. Crystallogr., 2014, vol. 47, pp. 936–47.Google Scholar
  57. 57.
    57 H.M. Otte and D.O. Welch: Philos. Mag., 1964, vol. 9, pp. 299–313.Google Scholar
  58. 58.
    Arlazarov A, Gouné M, Bouaziz O, Hazotte A, Petitgand G, Barges P: Mater. Sci. Eng. A, 2012, vol. 542, pp. 31–39.Google Scholar
  59. 59.
    59 J.-M. Jang, S.-J. Kim, N.H. Kang, K.-M. Cho, and D.-W. Suh: Met. Mater. Int., 2009, vol. 15, pp. 909–16.Google Scholar
  60. 60.
    60 G. Ribarik, T. Ungar and J. Gubicza: J. Appl. Cryst., 2001, vol. 34, pp. 669-76.Google Scholar
  61. 61.
    61 A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, and T. Ungár: J. Appl. Crystallogr., 2003, vol. 36, pp. 160–2.Google Scholar
  62. 62.
    PROFIT: Profile fitting software. The Netherlands: PANAlytical (formerly Philips), PANAlytical, 1996.Google Scholar
  63. 63.
    63 H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.Google Scholar
  64. 64.
    L. Lutterotti, S. Matthies, and H.-R. Wenk: Proc. Twelfth Int. Conf. Textures Mater., 1999, vol. 1, pp. 1599–1604.Google Scholar
  65. 65.
    65 G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.Google Scholar
  66. 66.
    66 L.G. Telser, J. Aitchison, and J.A.C. Brown: J. Farm Econ., 1959, vol. 41, p. 161.Google Scholar
  67. 67.
    67 V.G. Kurdjumow and G. Sachs: Zeitschrift für Phys., 1930, vol. 64, pp. 325–43.Google Scholar
  68. 68.
    68 C. Wang, J. Shi, C.Y. Wang, W.J. Hui, and M.Q. Wang: ISIJ Int., 2011, vol. 51, pp. 651–6.Google Scholar
  69. 69.
    69 R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, and G.R. Purdy: Acta Mater., 2013, vol. 61, pp. 697–707.Google Scholar
  70. 70.
    Wang C, Cao W, Han Y, Wang C, Xiang Huang C, Dong H (2015) J Iron Steel Res Int 22:42–47Google Scholar
  71. 71.
    71 H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621–6.Google Scholar
  72. 72.
    72 H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, C. Wang, J. Li, and H. Dong: Mater. Sci. Eng. A, 2012, vol. 532, pp. 435–42.Google Scholar
  73. 73.
    73 J. Cohen: Local Atomic Arrangements Studied by X-Ray Diffraction, Gordon and Breach, New York, 1966.Google Scholar
  74. 74.
    74 J. Chakraborty, T. Maity, K. Kumar, and S. Mukherjee: Adv. Mater. Res., 2014, vol. 996, pp. 855–9.Google Scholar
  75. 75.
    75 U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen and E.J. Mittemeijer: J. Appl. Crystallography, 2005, vol. 38, pp. 1-29.Google Scholar
  76. 76.
    W. Serruys: Ph.D. Thesis, Katholieke Univ. Leuven, 1988.Google Scholar
  77. 77.
    77 M. Eckhardt and H. Ruppersberg: Z.Metallk. 1988, vol. 79, pp. 662-66.Google Scholar
  78. 78.
    78 I.C. Noyan and J.B. Cohen: Adv. X-ray Analysis, 1983, vol. 27, p. 129.Google Scholar
  79. 79.
    Gubicza J (2014) X-Ray Line Profile Analysis in Materials Science. IGI Global, HersheyGoogle Scholar
  80. 80.
    80 K. Jeong, J.E. Jin, Y.S. Jung, S. Kang, and Y.K. Lee: Acta Mater., 2013, vol. 61, pp. 3399–410.Google Scholar
  81. 81.
    81 H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464–76.Google Scholar
  82. 82.
    82 S. Lee, K. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2356–63.Google Scholar
  83. 83.
    83 P.H. Adler, G.B. Olson, and W.S. Owen: Metall. Mater. Trans. A, 1986, vol. 17, pp. 1725–37.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Avanish K. Chandan
    • 1
    • 2
  • G. Mishra
    • 3
  • B. Mahato
    • 1
  • S. G. Chowdhury
    • 1
    • 2
  • S. Kundu
    • 3
  • J. Chakraborty
    • 1
    • 2
    Email author
  1. 1.Materials Engineering DivisionCSIR-National Metallurgical LaboratoryJamshedpurIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
  3. 3.Research and Development DivisionTata Steel LimitedJamshedpurIndia

Personalised recommendations