Advertisement

Mechanical Characteristics of a Roll-Bonded Cu-Clad Steel Sheet Processed Through Incremental Forming

  • 115 Accesses

Abstract

Incremental sheet forming (ISF) is an emerging cold forming process with a high economic payoff. In this study, the influence of the ISF process on the tensile properties of Cu-clad Steel sheet is analyzed experimentally. Depending on the forming conditions, the post-ISF values of yield strength, tensile strength, and ductility are found to range from 161 to 430, 288 to 449 MPa, and 4.93 to 16.62 pct, respectively. These properties show a strong dependence on several correlated quantities such as the applied plastic strain, grain size, and mean residual stress. As the plastic strain increases from 0.08 to 0.8, the width of the grain decreases from 8.11 to 5.78 µm and the residual stress increases from − 15 to − 131 MPa. In comparison to the unformed sheet, ISF enhances the yield strength (4.6 to 117 pct) and tensile strength (0.6 to 73 pct). The nature of change in ductility (− 67 to 117 pct), however, depends on the process conditions, especially the state of the unformed sheet (i.e., rolled/annealed) and the value of applied strain. In general, the rolled (or prestrained) sheet upon ISF experiences an increase in ductility. The annealed sheet, however, sees a drop in ductility when the forming strains are low (e.g., < 0.4) and an increase in ductility when the strains are high (e.g., > 0.4). X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS) analyses confirm that no new phase formed during ISF.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

d :

Tool diameter

θ :

Deformation angle

ω :

Tool rotation

f :

Feed rate

p :

Step size

T :

Annealing temperature

σ t :

Post-ISF tensile strength

σ y :

Post-ISF yield strength

λ :

Ductility or percent elongation

η :

Grain width in the cross section

ISF:

Incremental sheet forming

ɛ-ISF :

Strain applied by ISF

EDS:

Electron dispersive spectroscopy

XRD:

X-ray diffraction

SEM:

Scanning electron microscope

EBSD:

electron backscatter diffraction

References

  1. 1.

    W.F. Hosford and R.M. Caddell: Metal Forming Mechanics and Metallurgy, 4th ed., Cambridge University Press, New York, NY, 2011, pp. 237–53.

  2. 2.

    G. Hussain, L. Gao, N. Hayat, and X. Ziran: J. Mater. Process. Technol., 2009, vol. 209, pp. 4237–42.

  3. 3.

    Y. Mu, B. Wang, J. Zhou, X. Huang, and X. Li: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2017–5467.

  4. 4.

    S. Serajzadeh and M. Mohammadzadeh: Int. J. Adv. Manuf. Technol., 2007, vol. 34, pp. 262–69.

  5. 5.

    Y. Zhao, B. Song, J. Pei, C. Jia, B. Li, and G. Linlin: J. Mater. Process. Technol., 2013, vol. 213, pp. 1855–63.

  6. 6.

    S.A. Balogun, D. Esezobor, and S.O. Adeosun: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1570–74.

  7. 7.

    Y. Mo, Y. Jiang, X. Liu, and J. Xie: Mater. Sci. Eng. A, 2016, vol. 670, pp. 122–31.

  8. 8.

    S. Sepahi-Boroujeni and A. Sepahi-Boroujeni: J. Manuf. Process., 2016, vol. 24, pp. 71–77.

  9. 9.

    J. Xu, D. Shan, X. Wang, B. Guo, M. Shirooyeh, T.G. Langdon, and G. Xing: J. Mater. Sci., 2015, vol. 50, pp. 7424–36.

  10. 10.

    R.B. Figueiredo and T.G. Langdon: J. Mater. Sci., 2010, vol. 45, pp. 4827–36.

  11. 11.

    F.O. Neves, D.U. Braga, and A.S.C. Silva: Mater. Manuf. Process., 2015 vol. 30, pp. 1278–82.

  12. 12.

    S.B.M. Echrif and M. Hrairi: Mater. Manuf. Process., 2011, vol. 26, pp. 1404–14.

  13. 13.

    M.B. Silva, M. Skjoedt, P.A.F. Martins, and N. Bay: Int. J. Mach. Tool. Manuf., 2008, vol. 48, pp. 73–83.

  14. 14.

    K.A. Al-Ghamdi and G. Hussain: Int. J. Mach. Tool. Manuf., 2015, vol. 88, pp. 82–94.

  15. 15.

    L. Van-Sy and N.T. Nam: J. Manuf. Technol. Res., 2014, vol. 6, pp. 17–31.

  16. 16.

    J. Park, J. Kim, N. Park, and Y. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 97–105.

  17. 17.

    G. Hirt, J. Ames, M. Bambach, and R. Kopp. CIRP Ann., 2004, vol. 53, pp. 203–06.

  18. 18.

    J. Jeswiet, E. Hagan, and A. Szekeres: Proc. IMechE Part B: J. Eng. Manuf., 2002, vol. 261, pp. 1367–71.

  19. 19.

    I. Ulacia, L. Galdos, J.A. Esanola, J.L. Aga, G. Arruebarrena, E.S. De-Argandon, and I. Hurato: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3352–77.

  20. 20.

    L.M. Lozano-Sánchez, A.O. Sustaita, M. Soto, S. Biradar, L. Ge, E. Segura-Cárdenas, J. Diabb, L.E. Elizalde, E.V. Barrera, and A. Elías-Zúniga: J. Mater. Process. Technol., 2017, vol. 242, pp. 218–27.

  21. 21.

    T. Huang-Chi, H. Chinghua, and H. Chin-Chuan: Int. J. Adv. Manuf. Technol., 2010, vol. 49, pp. 1029–36.

  22. 22.

    M.J. Anderson and P.J. Whitcomb: RSM Simplified—Optimizing Processes Using Response Surface Methods for Design of Experiments, 2nd ed., Productivity Press, New York, NY, 2005, pp. 75–90.

  23. 23.

    N. Hansen: Scripta Mater., 2004, vol. 51, pp. 801–06.

  24. 24.

    M. Durante, A. Formisano, A. Langella, F. Memola, and C. Minutolo: J. Mater. Process. Technol., 2009, vol. 209, pp. 4621–26.

  25. 25.

    A. Giuseppina, C. Claudion, F. Luigino, and G. Francesco: Int. J. Mech. Sci., 2016, vols. 108–109, pp. 39–48.

  26. 26.

    D. Xu, W. Wu, R. Malhotra, J. Chen, B. Lu, and J. Cao: Int. J. Mach. Tool. Manuf., 2003, pp. 37–46.

  27. 27.

    G. Buffa, D. Campanella, and L. Fratini: Int. J. Adv. Manuf. Technol., 2013, vol. 66, pp. 1343–51.

  28. 28.

    P.R. Cetlin, E.C.S. Corrêa, and M.T.P. Aguilar: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 589–601.

  29. 29.

    N.R. Costa, J. Lourenço, and Z.L. Pereira: Ch. Intell. Lab. Sys., 2011 vol. 107, pp. 234–44.

Download references

Acknowledgments

The authors are thankful of GIK Institute of Engineering Sciences & Technology, Pakistan, for providing necessary technical support to materialize this research.

Funding

This research work was supported by the Fundamental Research Funds for the Central Universities, People’s Republic of China (Grant No. NS2015055), National Natural Science Foundation of China (Grant No. 51105202); and the State Administration of Foreign Experts Affairs, People’s Republic of China, and the Ministry of Education, People’s Republic of China (111 Project—Grant No. 773 B16024).

Author information

Correspondence to G. Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 5, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Hussain, G. Mechanical Characteristics of a Roll-Bonded Cu-Clad Steel Sheet Processed Through Incremental Forming. Metall and Mat Trans A 50, 4594–4607 (2019). https://doi.org/10.1007/s11661-019-05366-y

Download citation