Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4513–4530 | Cite as

Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel

  • A. A. TiamiyuEmail author
  • Shiteng Zhao
  • Zezhou Li
  • A. G. Odeshi
  • J. A. Szpunar


The roles of grain size, texture, strain, and strain rate on the thermal and mechanical stability of austenite in AISI 321 metastable austenitic stainless steel were studied. Ultrafine grain (UFG), fine grain (FG), and coarse grain (CG) specimens with average grain sizes of 0.24, 3, and 37 µm sizes, respectively, were investigated. To determine the thermal stability of austenite (TSA), samples were soaked in liquid nitrogen (− 196 °C) for varying times between 0.5 and 24 hours. On the other hand, the mechanical stability of austenite (MSA) was studied by subjecting cylindrical specimens to both quasi-static (4.4 × 10−3 s−1) and dynamic loading conditions (between 1300 and 8800 s−1). Thermally-induced α′-martensite was only observed at an incumbent time in AISI 321 to suggests an isothermal martensitic transformation occurred. Both Kurdjumov-Sachs (\( \{ 111\}_{\gamma } ||\{ 110\}_{{\alpha^{\prime}}} \) and \( \langle \bar{1}01\rangle_{\gamma } ||\langle 1\bar{1}1\rangle_{{\alpha^{\prime } }} \)) and Nishiyama–Wasserman (\( \{ 111\}_{\gamma } ||\{ 110\}_{{\alpha^{\prime}}} \) and \( \langle 112\rangle_{\gamma } ||\langle 011\rangle_{{\alpha^{\prime } }} \)) orientation relationships existed between the untransformed γ and thin-plate α′-martensite. The thermally-induced phase transformation was highly suppressed in UFG specimens. While TSA decreased with an increase in grain size, MSA decreased with a decrease in grain size. While thin-plate α′ predominantly formed in the thermally-treated AISI 321 steel (FG and CG specimens only), lath and irregularly-shaped α′ formed in the specimens deformed under quasi-static and dynamic loading conditions, respectively. Irrespective of strain rate, deformation-induced α′ in UFG specimens inherited the morphology of the deformed austenite grain that is equiaxed. Irrespective of grain size, MSA also decreased with increase in strain (up to a critical strain for specimens deformed under dynamic loading condition) and decrease in strain rate. In the event of adiabatic shear band (ASB) formation in a specimen deformed at high strain rate, MSA increased as the ASB was approached due to the temperature rise in the ASB region. Electron backscattered diffractometry examination revealed that the evolution of both thermally- and deformation-induced martensite is orientation-dependent in FG and CG specimens. The instability (thermal and mechanical) of the austenite phase is highest in the RD/CD||[100]-oriented grains (RD and CD are rolling and compression directions, respectively), followed by grains oriented near RD/CD||[110] and RD/CD||[111], in that order. These findings could open a new window of engineering the initial texture of metastable austenitic stainless steel to either aid thermally and/or mechanically-stable austenite phase or promote both isothermal and deformation-induced martensitic phase transformation.



Authors wish to acknowledge the financial support of Natural Sciences and Engineering Research Council of Canada (NSERC). A.A. Tiamiyu acknowledges the financial support provided by the Vanier Canada Graduate Scholarship for this study. The support of ACUREN Group Inc. for the use of Fischer Feritscope MP30E is well appreciated.


  1. 1.
    J. Y. Choi, T. Fukuda, and T. Kakeshita: Mater. Sci. Forum, 2010, vol. 654–656, pp. 130–133.Google Scholar
  2. 2.
    P. R. Rios and J. R. C. Guimarães: Mater. Res., 2016, vol. 19, pp. 490–495.Google Scholar
  3. 3.
    H. Zheng, W. Wang, D. Wu, S. Xue, Q. Zhai, J. Frenzel, and Z. Luo: Intermetallics, 2013, vol. 36, pp. 90–95.Google Scholar
  4. 4.
    T. Kakeshita, T. Saburi,K. Shimizu: Philos. Mag. B Phys. Condens. Mater. 2000, vol. 80, pp. 171–181.Google Scholar
  5. 5.
    E. Yasar, E. Güler, H. Güngünes, and T. N. Durlu: Mater. Charact., 2008, vol. 59, pp. 769–772.Google Scholar
  6. 6.
    T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, and M. Date: Mater. Trans. JIM, 1993, vol. 34, pp. 423–428.Google Scholar
  7. 7.
    D. E. Laughlin, N. J. Jones, A. J. Schwartz, and T. B. Massalski: Int. Conf. Martensitic Transform. 2008, 2013, pp. 141–144.Google Scholar
  8. 8.
    J. M. Nam, T. Terai, and T. Kakeshita: J. Alloys Compd., 2013 vol. 577, pp. S348–S352.Google Scholar
  9. 9.
    I. Y. Georgieva; and I. I. Nikitina: Met Sci Heat Treat, 1972, vol. 5, pp. 68–72.Google Scholar
  10. 10.
    D. Z. Yang and C. M. Wayman: Scr. Metall., 1983, vol. 17, pp. 1377–1379.Google Scholar
  11. 11.
    M. B. Leban and R. Tisu: Eng. Fail. Anal., 2013, vol. 33, pp. 430–438.Google Scholar
  12. 12.
    K. Spencer, J. D. Embury, K. T. Conlon, M. Véron, and Y. Bréchet: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 873–881.Google Scholar
  13. 13.
    P. R. Rios, G. SilvaDrumond, T. Neves, J. R. C. Guimarães: Mater. Sci. Forum (2014), 783, pp. 2182–2187.Google Scholar
  14. 14.
    A. A. Tiamiyu, J. A. Szpunar, A. G. Odeshi, I. Oguocha, M. Eskandari: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5990–6012.Google Scholar
  15. 15.
    C. Weinong and S. Bo: Split Hopkinson (Kolsky) Bar: Design, Testing and Applications (Mechanical Engineering Series), Illustrate. New York: Springer Science & Business Media, 2010.Google Scholar
  16. 16.
    J. Talonen, P. Aspegren, and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp. 1506–1512.Google Scholar
  17. 17.
    Y. F. Shen, N. Jia, Y. D. Wang, X. Sun, L. Zuo, and D. Raabe: Acta Mater., 2015, vol. 97, pp. 305–315.Google Scholar
  18. 18.
    H. F. G. DeAbreu, S. S. DeCarvalho, P. DeLimaNeto, R. P. DosSantos, V. N. Freire, P. M. D. O. Silva, and S. S. M. Tavares: Mater. Res., 2007, vol. 10, pp. 359–366.Google Scholar
  19. 19.
    H.K.D.H. Bhadeshia and R.W.K. Honeycombe: in Steels: Microstructure and Properties, Third edition, Butterworth-Heinemann, Boston, 2006, pp. 95–128.Google Scholar
  20. 20.
    Y. Matsuoka, T. Iwasaki, N. Nakada, and T. Tsuchiyama: ISIJ Int., 2013, vol. 53, pp. 1224–1230.Google Scholar
  21. 21.
    Y. L. Chang, P. Y. Chen, Y. T. Tsai, and J. R. Yang: Mater. Charact., 2016, vol. 113, pp. 17–25.Google Scholar
  22. 22.
    L. Bracke, K. Verbeken, L. Kestens, and J. Penning: Acta Mater., 2009, vol. 57, pp. 1512–1524.Google Scholar
  23. 23.
    H. Y. Lee, H. W. Yen, H. T. Chang, and J. R. Yang: Scr. Mater., 2010, vol. 62, pp. 670–673.Google Scholar
  24. 24.
    T. Maki: in Phase Transformations in Steels, Woodhead Publishing, Oxford, 2012, pp. 34–58.Google Scholar
  25. 25.
    M. Umemoto, E. Yoshitake, and I. Tamura: J. Mater. Sci., 1983, vol. 18, pp. 2893–2904.Google Scholar
  26. 26.
    A. Shibata, T. Murakami, S. Morito, T. Furuhara, and T. Maki: Mater. Trans., 2008, vol. 49, pp. 1242–1248.Google Scholar
  27. 27.
    S. Kajiwara and W. S. Owen: Scr. Metall., 1977, vol. 11, pp. 137–142.Google Scholar
  28. 28.
    N. N. Thadhani and M. A. Meyers: Prog. Mater. Sci., 1986, vol. 30, pp. 1–37.Google Scholar
  29. 29.
    A. A. Tiamiyu, A. G. Odeshi, and J. A. Szpunar: Mater. Sci. Eng. A, 2018, vol. 711, pp. 233–249.Google Scholar
  30. 30.
    A. Kundu and P. C. Chakraborti: J. Mater. Sci., 2010, vol. 45, pp. 5482–5489.Google Scholar
  31. 31.
    J. A. Lichtenfeld, M. C. Mataya, and C. J. Van Tyne: Metall. Mater. Trans. A, 2006, vol. 37, pp. 147–161.Google Scholar
  32. 32.
    T. Iwamoto, T. Sawa, and M. Cherkaoui: Int. J. Mod. Phys. B, 2008, vol. 22, pp. 5985–5990.Google Scholar
  33. 33.
    J. Talonen, H. Hänninen, P. Nenonen, and G. Pape: Metall. Mater. Trans. A, 2005, vol. 36, pp. 421–432.Google Scholar
  34. 34.
    A. Das and S. Tarafder: Int. J. Plast., 2009, vol. 25, pp. 2222–2247.Google Scholar
  35. 35.
    H. Yen, S. W. Ooi, M. Eizadjou, A. Breen, C. Huang, H. K. D. H. Bhadeshia, and S. P. Ringer: Acta Mater., 2015, vol. 82, pp. 100–114.Google Scholar
  36. 36.
    A. A. Tiamiyu, V. Tari, J. A. Szpunar, A. G. Odeshi, and A. K. Khan: Int. J. Plast., 2018, vol. 107, pp. 79–99.Google Scholar
  37. 37.
    W. S. Choi, S. Sandlöbes, N. V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, B. C. De Cooman, and D. Raabe: Acta Mater., 2017, vol. 132, pp. 162–173.Google Scholar
  38. 38.
    L. Wang, J.C. Eknfs, Y. Cai, F. Zhao, D. Fan, and S.N. Luo: J. Appl. Phys., 2015, vol. 117, pp. 084301.Google Scholar
  39. 39.
    M. Karlsen, O. Grong, M. Søfferud, J. Hjelen, G. Rørvik, and R. Chiron: Metall. Mater. Trans. A, 2009, vol. 40, pp. 310–320.Google Scholar
  40. 40.
    H. Zhan, W. Zeng, G. Wang, D. Kent, and M. Dargusch: Mater. Charact., 2015, vol. 102, pp. 103–113.Google Scholar
  41. 41.
    J. Peirs, W. Tirry, B. Amin-Ahmadi, F. Coghe, P. Verleysen, L. Rabet, D. Schryvers, and J. Degrieck: Mater. Charact., 2013, vol. 75, pp. 79–92.Google Scholar
  42. 42.
    V. F. Nesterenko, M. A. Meyers, J. C. LaSalvia, M. P. Bondar, Y. J. Chen, and Y. L. Lukyanov: Mater. Sci. Eng. A, 1997, vol. 229, pp. 23–41.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • A. A. Tiamiyu
    • 1
    Email author
  • Shiteng Zhao
    • 2
  • Zezhou Li
    • 3
  • A. G. Odeshi
    • 1
  • J. A. Szpunar
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.University of California, BerkeleyBerkeleyUSA
  3. 3.University of California, San DiegoLa JollaUSA

Personalised recommendations