Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4569–4581 | Cite as

On the Formation of Nanoscale Intergranular Intermetallic Compound Films in a Cu-5 at. pct Zr Alloy

  • Dengshan ZhouEmail author
  • Hao Wang
  • Ondrej Muránsky
  • Charlie Kong
  • Chao YangEmail author
  • Deliang Zhang
Article
  • 175 Downloads

Abstract

Grain boundary structure and chemical composition have been shown to play important roles in plasticity, strength, creep, diffusivity, and conductivity of fine-grained metallic materials. Wetting of grain boundaries in metallic materials with nanoscale intergranular intermetallic compound films (NIICFs) is suggested to offer enhanced strength and ductility of alloys. In the current study, the NIICF wetting Cu-Zr micrograins of the matrix is observed in a Cu-5 at. pct Zr alloy produced by powder metallurgy. The underlying mechanism responsible for the formation of these NIICFs is discussed, and the effect of these films on the strength and strain-hardening capacity of the alloy is evaluated.

Notes

Acknowledgments

D.S. Zhou acknowledges the financial support from the Natural Science Foundation of China (Grant No. 51701036) to this study. D.S. Zhou also wishes to extend his thanks to Mr. Yonghui Sun and Mr. Yu Dong for their help with STEM-HAADF characterization.

References

  1. 1.
    J. Hu, Y.N. Shi, X. Sauvage, G. Sha and K. Lu: Science, 2017, vol. 355, pp. 1292-1296.Google Scholar
  2. 2.
    T. Chookajorn, H.A. Murdoch and C.A. Schuh: Science, 2012, vol. 337, pp. 951-954.Google Scholar
  3. 3.
    S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe and A. Hirata: Nature, 2017, vol. 544, pp. 460-64.Google Scholar
  4. 4.
    N. Takata, Y. Ohtake, K. Kita, K. Kitagawa and N. Tsuji: Scr. Mater., 2009, vol. 60, pp. 590-593.Google Scholar
  5. 5.
    N. Vo, D. Dunand and D. Seidman: Acta Mater., 2014, vol. 63, pp. 73-85.Google Scholar
  6. 6.
    S.-H. Kim, H. Kim and N.J. Kim: Nature, 2015, vol. 518, pp. 77.Google Scholar
  7. 7.
    Z. Jiao, J. Luan, M. Miller and C. Liu: Acta Mater., 2015, vol. 97, pp. 58-67.Google Scholar
  8. 8.
    L. Huang, L. Geng and H. Peng: Prog. Mater. Sci., 2015, vol. 71, pp. 93-168.Google Scholar
  9. 9.
    S.J. Dillon, M. Tang, W.C. Carter and M.P. Harmer: Acta Mater., 2007, vol. 55, pp. 6208-6218.Google Scholar
  10. 10.
    P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer and M.P. Harmer: Acta Mater., 2014, vol. 62, pp. 1-48.Google Scholar
  11. 11.
    M. Park and C.A. Schuh: Nature Commun., 2015, vol. 6, pp. 6858.Google Scholar
  12. 12.
    M. Park, T. Chookajorn and C.A. Schuh: Acta Mater., 2018, vol. 145, pp. 123-133.Google Scholar
  13. 13.
    F. Abdeljawad, P. Lu, N. Argibay, B.G. Clark, B.L. Boyce and S.M. Foiles: Acta Mater., 2017, vol. 126, pp. 528-539.Google Scholar
  14. 14.
    M. Azimi and G. Akbari: J. Alloys Compd., 2011, vol. 509, pp. 27-32.Google Scholar
  15. 15.
    M.A. Atwater, R.O. Scattergood and C.C. Koch: Mater. Sci. Eng. A, 2013, vol. 559, pp. 250-256.Google Scholar
  16. 16.
    M. Azimi and G. Akbari: J. Alloys Compd., 2013, vol. 555, pp. 112-116.Google Scholar
  17. 17.
    A. Khalajhedayati, Z. Pan and T.J. Rupert: Nat. Commun., 2016, vol. 7, pp. 10802.Google Scholar
  18. 18.
    D. Zhou, Z. Quadir, C. Kong, H. Pan, Z. Liu, G. Sha, P. Munroe and D. Zhang: Materialia, 2018, vol. 4, pp. 268-275.Google Scholar
  19. 19.
    Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2673-2688.Google Scholar
  20. 20.
    Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia: Acta Mater., 2015, vol. 82, pp. 304-315.Google Scholar
  21. 21.
    H. Asgharzadeh and H.J. McQueen: Mater. Sci. Technol., 2014, vol. 31, pp. 1016-1034.Google Scholar
  22. 22.
    H. Baker: ASM Handbook, ASM International, Materials Park, 1992.Google Scholar
  23. 23.
    B. Straumal, A. Mazilkin and B. Baretzky: Curr. Opin. Solid St., 2016, vol. 20, pp. 247-256.Google Scholar
  24. 24.
    W.D. Kaplan, D. Chatain, P. Wynblatt and W.C. Carter: J. Mater. Sci., 2013, vol. 48, pp. 5681-5717.Google Scholar
  25. 25.
    J. Zhao, J. Zhang, L. Cao, Y. Wang, P. Zhang, K. Wu, G. Liu and J. Sun: Acta Mater., 2017, vol. 132, pp. 550-564.Google Scholar
  26. 26.
    A. Khalajhedayati and T.J. Rupert: JOM, 2015, vol. 67, pp. 2788-2801.Google Scholar
  27. 27.
    J.D. Schuler and T.J. Rupert: Acta Mater., 2017, vol. 140, pp. 196-205.Google Scholar
  28. 28.
    H. Okamoto: J. Phase Equilib. Diff., 2008, vol. 29, pp. 204-204.Google Scholar
  29. 29.
    D. Zhou, X. Wang, O. Muránsky, X. Wang, Y. Xie, C. Yang and D. Zhang: Mater. Sci. Eng. A, 2018, vol. 730, pp. 238-335.Google Scholar
  30. 30.
    T. Zhu and J. Li: Prog. Mater. Sci., 2010, vol. 55, pp. 710-757.Google Scholar
  31. 31.
    S. Pauly, J. Bednarčik, U. Kühn and J. Eckert: Scr. Mater., 2010, vol. 63, pp. 336-338.Google Scholar
  32. 32.
    H. Kimura, A. Inoue, N. Muramatsu, K. Shin and T. Yamamoto: Mater. Trans., 2006, vol. 47, pp. 1595-1598.Google Scholar
  33. 33.
    B. Straumal, X. Sauvage, B. Baretzky, A. Mazilkin and R. Valiev: Scr. Mater., 2014, vol. 70, pp. 59-62.Google Scholar
  34. 34.
    S.J. Dillon, M.P. Harmer and J. Luo: JOM, 2009, vol. 61, pp. 38-44.Google Scholar
  35. 35.
    M.S. El-Eskandarany, A.A. Mahday, H. Ahmed and A. Amer: J. Alloys Compd., 2000, vol. 312, pp. 315-325.Google Scholar
  36. 36.
    I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Prog. Mater. Sci., 2018, vol. 94, pp. 462-540.Google Scholar
  37. 37.
    R. Schwab: Int. J. Plasticity, 2019, vol. 113, pp. 218-235.Google Scholar
  38. 38.
    Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2280-2283.Google Scholar
  39. 39.
    S. Cheng, Y. Zhao, Y. Zhu and E. Ma: Acta Mater., 2007, vol. 55, pp. 5822-5832.Google Scholar
  40. 40.
    Y. Wang, M. Chen, F. Zhou and E. Ma: Nature, 2002, vol. 419, pp. 912.Google Scholar
  41. 41.
    E. Ma and T. Zhu: Mater. Today, 2017, vol. 20, pp. 323-331.Google Scholar
  42. 42.
    X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang and Y. Zhu: Proc. Natl. Acad. Sci., 2015, vol. 112, pp. 14501-14505.Google Scholar
  43. 43.
    T. Fang, W. Li, N. Tao and K. Lu: Science, 2011, vol. 331, pp. 1587-1590.Google Scholar
  44. 44.
    Y. Ling: AMP J. Technol., 1996, vol. 5, pp. 37-48.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  3. 3.Australian Nuclear Science and Technology OrganizationLucas HeightsAustralia
  4. 4.School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyAustralia
  5. 5.Electron Microscope UnitThe University of New South WalesSydneyAustralia
  6. 6.Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations