Advertisement

Ratchetting in Cold-Drawn Pearlitic Steel Wires

  • 203 Accesses

  • 1 Citations

Abstract

The microscopic mechanisms that accommodate uniaxial ratchetting in cold-drawn pearlitic steel wires were explored. A two-stage evolution of ratchetting strain as a function of cycle numbers was observed. The initial sudden increase of plastic strain leads to a rapid decomposition of cementite, followed by a constant ratchetting strain rate with critical role of decomposed carbon atoms played in blocking dislocation motion. The dislocation configuration transforms from low-density lines and tangles to high-density cells and sub-grains with increasing strain. A possible mechanism of cementite decomposition is discussed in terms of carbon-dislocation interactions and an unfavorable cementite surface-to-volume ratio.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    C. Borchers, R. Kirchheim: Prog. Mater. Sci., 2016, vol. 82, pp. 405-44.

  2. 2.

    J. Embury, R. Fisher: Acta Metall., 1966, vol. 14, pp. 147-59.

  3. 3.

    K. Maurer, D. Warrington: Philos. Mag., 1967, vol. 15, pp. 321-7.

  4. 4.

    G. Langford: Metall. Mater. Trans. B. 1970, vol. 1, pp. 465-77.

  5. 5.

    J. G. Sevillano: Mater. Sci. Eng., 1975, vol. 21, pp. 221-5.

  6. 6.

    A. Inoue, T. Ogura, T. Masumoto: Metall. Trans. A. 1977, vol. 8, pp. 1689-95.

  7. 7.

    V. Gridnev, V. Gavrilyuk, I. Y. Dekhtyar, Y. Y. Meshkov, P. Nizin, V. Prokopenko: Phys. Stat. Sol. (a). 1972, vol. 14, pp. 689-94.

  8. 8.

    J. Languillaume, G. Kapelski, B. Baudelet: Acta Mater., 1997, vol. 45, pp. 1201-12.

  9. 9.

    H. G. Read, W. T. R. Jr, K. Hono, T. Tarui: Scripta Mater., 1997, vol. 37, pp. 1221-30.

  10. 10.

    X. Sauvage, J. Copreaux, F. Danoix, D. Blavette: Philos. Mag. A. 2000, vol. 80, pp. 781-96.

  11. 11.

    V. G. Gavriljuk: Mater. Sci. Eng. A. 2003, vol. 345, pp. 81-9.

  12. 12.

    T. Tarui, N. Maruyama, J. Takahashi, S. Nishida, H. Tashiro: Nippon Steel Tech. Rep., 2005, vol. 91, pp. 56–61.

  13. 13.

    Z.-A. Lv, P. Jiang, Z.-h. Wang, W.-h. Zhang, S.-h. Sun, W.-t. Fu: Mater. Lett., 2008, vol. 62, pp. 2825-7.

  14. 14.

    C. Borchers, R. Kirchheim, T. Al-Kassab, S. Goto: Mater. Sci. Eng. A. 2009, vol. 502, pp. 131-8.

  15. 15.

    J. Takahashi, T. Tarui, K. Kawakami: Ultramicroscopy. 2009, vol. 109, pp. 193-9.

  16. 16.

    J. Park, S.-D. Kim, S.-P. Hong, S.-I. Baik, D.-S. Ko, C. Y. Lee, D.-L. Lee, Y.-W. Kim: Mater. Sci. Eng. A. 2011, vol. 528, pp. 4947-52.

  17. 17.

    X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu: Acta Mater., 2011, vol. 59, pp. 3422-30.

  18. 18.

    S. Goto, R. Kirchheim, T. Al-Kassab, C. Borchers: Trans. Nonferrous Met. Soc. China. 2007, vol. 17, pp. 1129-38.

  19. 19.

    C. Borchers, T. Al-Kassab, S. Goto, R. Kirchheim: Mater. Sci. Eng. A. 2009, vol. 502, pp. 131-8.

  20. 20.

    F. Fang, Y. Zhao, P. Liu, L. Zhou, X.-j. Hu, X. Zhou, Z.-h. Xie: Mater. Sci. Eng. A. 2014, vol. 608, pp. 11-5.

  21. 21.

    C. Jiang, S. A. Maloy, S. G. Srinivasan: Scripta Mater., 2008, vol. 58, pp. 739-42.

  22. 22.

    V. I. Voronin, I. F. Berger, Y. N. Gornostyrev, V. N. Urtsev, A. R. Kuznetsov, A. V. Shmakov: JETP Lett., 2010, vol. 91, pp. 143-6.

  23. 23.

    M. H. Hong, W. T. Reynolds, T. Tarui, K. Hono: Metall. Mater. Trans. A. 1999, vol. 30, pp. 717-27.

  24. 24.

    K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, T. Takahashi: Scripta Mater., 2001, vol. 44, pp. 977-83.

  25. 25.

    N. Maruyama, T. Tarui, H. Tashiro: Scripta Mater., 2002, vol. 46, pp. 599-603.

  26. 26.

    F. Danoix, D. Julien, X. Sauvage, J. Copreaux: Mater. Sci. Eng. A. 1998, vol. 250, pp. 8-13.

  27. 27.

    M. Hong, K. Hono, W. Reynolds, T. Tarui: Metall. Mater. Trans. A. 1999, vol. 30, pp. 717-27.

  28. 28.

    X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki, K. Hono: Scripta Mater., 2009, vol. 60, pp. 1056-61.

  29. 29.

    Y. J. Li, P. Choi, C. Borchers, Y. Z. Chen, S. Goto, D. Raabe, R. Kirchheim: Ultramicroscopy. 2011, vol. 111, pp. 628-32.

  30. 30.

    V. Gavrilyuk, D. Gertsriken, Y. A. Polushkin, A. Fal’chenko: Fiz. Mekh. Mater. 1981, vol. 51, pp. 147-52.

  31. 31.

    V. Gridnev, V. Gavrilyuk: Phys. Met.(USSR). 1982, vol. 4, pp. 531-51.

  32. 32.

    W. J. Nam, C. M. Bae, S. J. Oh, S.-J. Kwon: Scripta Mater., 2000, vol. 42, pp. 457-63

  33. 33.

    N. Min, W. Li, H. Li, X. Jin: J. Mater. Sci. Technol., 2010, vol. 26, pp. 776-82.

  34. 34.

    J. Chakraborty, M. Ghosh, R. Ranjan, G. Das, D. Das, S. Chandra: Philos. Mag., 2013, vol. 93, pp. 4598-616.

  35. 35.

    V. Gavriljuk: Mater. Sci. Eng. A. 2003, vol. 345, pp. 81-9.

  36. 36.

    N. Ohno: J. Soc. Mater. Sci. Jpn. 1997, vol. 46, pp. 1-9.

  37. 37.

    S. Bari, T. Hassan: Int. J. Plast., 2002, vol. 18, pp. 873-94.

  38. 38.

    G. Kang: Int. J. Fatigue. 2008, vol. 30, pp. 1448-72.

  39. 39.

    G. Kang, Y. Dong, H. Wang, Y. Liu, X. Cheng: Mater. Sci. Eng. A. 2010, vol. 527, pp. 5952-61.

  40. 40.

    J. L. Chaboche: Int. J. Plast., 2008, vol. 24, pp. 1642-93.

  41. 41.

    P. J. Armstrong, C. Frederick: A mathematical representation of the multiaxial Bauschinger effect, Berkeley: Nuclear Laboratories, 1966.

  42. 42.

    K. Saï: Int. J. Plast., 2011, vol. 27, pp. 250-81.

  43. 43.

    L. Bocher, P. Delobelle, P. Robinet, X. Feaugas: Int. J. Plast., 2001, vol. 17, pp. 1491-530.

  44. 44.

    X. Feaugas, C. Gaudin: Int. J. Plast., 2004, vol. 20, pp. 643-62.

  45. 45.

    C. Gaudin, X. Feaugas: Acta Mater., 2004, vol. 52, pp. 3097-110.

  46. 46.

    J. Zhang, Y. Jiang: Int. J. Plast., 2005, vol. 21, pp. 2191-211.

  47. 47.

    L. Taleb, A. Hauet: Int. J. Plast., 2009, vol. 25, pp. 1359-85.

  48. 48.

    A. Ghosh, N. P. Gurao: Mater. Des., 2016, vol. 109, pp. 186-96.

  49. 49.

    G. Kang, Y. Dong, Y. Liu, H. Wang, X. Cheng: Mater. Sci. Eng. A. 2011, vol. 528, pp. 5610-20.

  50. 50.

    L. Xiang, L. W. Liang, Y. J. Wang, Y. Chen, H. Y. Wang, L. H. Dai: Mater. Sci. Eng. A. 2019, vol. 757, pp. 1-13.

  51. 51.

    N. Ridley: Metall. Mater. Trans. A. 1984, vol. 15, pp. 1019-36.

  52. 52.

    X. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, H. Vandekinderen: Acta Mater., 2006, vol. 54, pp. 1029-40.

  53. 53.

    Y. J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, R. Kirchheim: Acta Mater., 2011, vol. 59, pp. 3965-77.

  54. 54.

    V. G. Gavrilyuk, V. G. Prokopenko, O. N. Razumov: Phys. Stat. Sol. (a). 1979, vol. 53, pp. 147-54.

  55. 55.

    J. Wang, A. Misra: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 20-8.

  56. 56.

    M. J. Demkowicz, L. Thilly: Acta Mater., 2011, vol. 59, pp. 7744-56.

  57. 57.

    I. J. Beyerlein, M. J. Demkowicz, A. Misra, B. P. Uberuaga: Prog. Mater. Sci., 2015, vol. 74, pp. 125-210.

  58. 58.

    M. Guziewski, S. P. Coleman, C. R. Weinberger: Acta Mater., 2018, vol. 144, pp. 656-65.

  59. 59.

    F. X. Kayser, Y. Sumitomo: J. Phase Equilib., 1997, vol. 18, pp. 458-64.

  60. 60.

    N. Medvedeva, A. Ivanovskii, L. Kar’kina: Phys. Met. Metall., 2003, vol. 96, pp. 452-6.

  61. 61.

    L. Battezzati, M. Baricco, S. Curiotto: Acta Mater., 2005, vol. 53, pp. 1849-56.

  62. 62.

    N. I. Medvedeva, L. E. Kar’kina, A. L. Ivanovskii: Phys. Met. Metall., 2006, vol. 101, pp. 440.

  63. 63.

    B. Harris: Engineering composite materials. Institute of metals London, 1986.

  64. 64.

    G. A. Nematollahi, J. von Pezold, J. Neugebauer, D. Raabe: Acta Mater., 2013, vol. 61, pp. 1773-84.

  65. 65.

    F. Fang, Y. Zhao, P. Liu, L. Zhou, X.-j. Hu, X. Zhou, Z.-h. Xie: Mater. Sci. Eng. A. 2014, vol. 608, pp. 11-5.

  66. 66.

    G. A. Nematollahi, B. Grabowski, D. Raabe, J. Neugebauer: Acta Mater., 2016, vol. 111, pp. 321-34.

Download references

Acknowledgments

This work is supported financially by the National Key Research and Development Program of China (No. 2017YFB0702003), the NSFC (No. 11472287, No. 11790292, and No. 11572324), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB22040302 and XDB22040303), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJSSW-JSC011).

Author information

Correspondence to Lanhong Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 7, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Xiang, L., Wang, Y. et al. Ratchetting in Cold-Drawn Pearlitic Steel Wires. Metall and Mat Trans A 50, 4561–4568 (2019). https://doi.org/10.1007/s11661-019-05359-x

Download citation