Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4632–4641 | Cite as

A Review of Eutectic Au-Ge Solder Joints

  • Andreas LarssonEmail author
  • Torleif A. Tollefsen
  • Ole Martin Løvvik
  • Knut E. Aasmundtveit
Article
  • 134 Downloads

Abstract

Gold-germanium (Au-Ge) joints have been part of the electronics industry since the birth of the solid state transistor. Today they find their role as a reliable joining technology, especially for high-temperature applications. This article is a literature study reviewing Au-Ge joints: Their uses, properties, material compatibility, application techniques, and performance characteristics. The review concludes that it is possible to create high-quality and very strong Au-Ge joints with a shear strength up to 150 MPa. They are stable and reliable, showing limited degradation after thousands of hours at high temperature and thousands of thermal cycles. Joints may be used in low-stress applications up to 300 °C.

Notes

Acknowledgments

We want to acknowledge the Norwegian Research Council for supporting this project (Project No.: 244915).

References

  1. 1.
    AT&T Archives and History Center: AT&T Archives Genesis of the Transistor, AT&T Tech Channel, New York, 1965.Google Scholar
  2. 2.
    The Nobel Prize in Physics 1956: http://www.nobelprize.org/nobel_prizes/physics/laureates/1956/. Accessed 13 November 2018.
  3. 3.
    United States Patent Office, 3,025,439, 1962.Google Scholar
  4. 4.
    United States Patent Office, 3,200,490, 1965.Google Scholar
  5. 5.
    K. Nishitani, O. Ishihara, H. Sawano, T. Ishii, S. Mitsui, and H. Miki (1976) Jpn. J. Appl. Phys. 16, 93–7.Google Scholar
  6. 6.
    M.S. Islam and P.J. McNally: Microelectron. Eng., 1998, vol. 40, pp. 35–42.Google Scholar
  7. 7.
    7 A.A. Iliadis, J.K. Zahurak, T. Neal, and W.T. Masselink: J. Electron. Mater., 1999, vol. 28, pp. 944–8.Google Scholar
  8. 8.
    V. Chidambaram, H.B. Yeung, and G. Shan: Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA,  https://doi.org/10.1109/ipfa.2012.6306308.
  9. 9.
    V. Chidambaram, H.B. Yeung, and G. Shan: J. Electron. Mater., 2012, vol. 41, pp. 2107–17.Google Scholar
  10. 10.
    P. Ning, R. Lai, D. Huff, F. Wang, K.D.T. Ngo, V.D. Immanuel, and K.J. Karimi: IEEE Trans. Power Electron., 2010, vol. 25, pp. 16–23.Google Scholar
  11. 11.
    M.J. Palmer, R.W. Johnson, and B.H. Ecedept: Int. High Temp. Electron., Santa Fe, NM, 2006.Google Scholar
  12. 12.
    W. Sabbah, S. Azzopardi, C. Buttay, R. Meuret, and E. Woirgard: Microelectron. Reliab., 2013, vol. 53, pp. 1617–21.Google Scholar
  13. 13.
    V.R. Manikam and K.Y. Cheong: Components, Packag. Manuf. Technol. IEEE Trans., 2011, vol. 1, pp. 457–478.Google Scholar
  14. 14.
    P. Zheng: Ph.D. dissertation, Dept. Electr. Comput. Eng., Auburn Univ., Auburn, AL, 2010.Google Scholar
  15. 15.
    A. Drevin-Bazin, F. Lacroix, and J.F. Barbot: J. Electron. Mater., 2014, vol. 43, pp. 695–701.Google Scholar
  16. 16.
    S. Egelkraut, L. Frey, M. Knoerr, and A. Schletz: IEEE 12th Proc. Electron. Packag. Technol. Conf. (EPTC), Singapore, 2010, pp. 660–67.Google Scholar
  17. 17.
    P. Hagler, P. Henson, and R.W. Johnson: IEEE Trans. Ind. Electron., 2011, vol. 58, pp. 2673–82.Google Scholar
  18. 18.
    A. Hutzler, A. Tokarski, S. Kraft, S. Zischler, and A. Schletz: IEEE Electron. Compon. Technol. Conf., Orlando, FL, 2014, pp. 1700–06.Google Scholar
  19. 19.
    F.L.F. Lang, S. Tanimoto, H. Ohashi, and H. Yamaguchi: 2009 Eur. Microelectron. Packag. Conf., 2009, pp. 3–7.Google Scholar
  20. 20.
    F. Lang, H. Yamaguchi, H. Ohashi, and H. Sato: J. Electron. Mater., 2011, vol. 40, pp. 1563–71.Google Scholar
  21. 21.
    S. Msolli, O. Dalverny, J. Alexis, and M. Karama: Integr. Power Electron. Syst. (CIPS), 2010 6th Int. Conf., 2010, pp. 16–18.Google Scholar
  22. 22.
    L.A. Navarro, X. Perpina, P. Godignon, J. Montserrat, V. Banu, M. Vellvehi, and X. Jorda: IEEE Trans. Power Electron., 2014, vol. 29, pp. 2261–71.Google Scholar
  23. 23.
    V. Chidambaram, J. Hald, and J. Hattel: J. Alloys Compd., 2010, vol. 490, pp. 170–9.Google Scholar
  24. 24.
    V. Chidambaram, J. Hald, and J. Hattel: Microelectron. Reliab., 2009, vol. 49, pp. 323–30.Google Scholar
  25. 25.
    H. Okamoto and T.B. Massalski: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 601–10.Google Scholar
  26. 26.
    P. Godignon, X. Jorda, M. Vellvehi, X. Perpina, V. Banu, D. Lopez, J. Barbero, P. Brosselard, and S. Massetti: IEEE Trans. Ind. Electron., 2011, vol. 58, pp. 2582–9.Google Scholar
  27. 27.
    L. Ma, X. Huang, and J. Zha: Int. Conf. Electron. Packag. Technol., 2013, pp. 946–49.Google Scholar
  28. 28.
    R. Kisiel and Z. Szczepański: Microelectron. Reliab., 2009, vol. 49, pp. 627–9.Google Scholar
  29. 29.
    E. Maset, E. Sanchis-Kilders, J.B. Ejea, A. Ferreres, J. Jordán, V. Esteve, P. Brosselard, X. Jordà, M. Vellvehi, and P. Godignon: IEEE Trans. Device Mater. Reliab., 2009, vol. 9, pp. 557–62.Google Scholar
  30. 30.
    S. Tanimoto, K. Watanabe, H. Tanisawa, K. Matsui, and S. Sato: Electrochem. Soc. Meet., 224th, The Electrochemical Society, San Francisco, CA, 2013, p. 1.Google Scholar
  31. 31.
    S. Tanimoto, K. Matsui, Y. Murakami, H. Yamaguchi, and H. Okumura: in IMAPS Int. Conf. High Temp. Election. (HiTEC), IMAPS, Albuquerque, NM, 2010, pp. 32–9.Google Scholar
  32. 32.
    V. Banu, P. Godignon, X. Jorda, M. Vellvehi, J. Millan, P. Brosselard, D. Lopez, and J. Barbero: Proc. Int. Semicond. Conf. CAS, 2010, vol. 2, pp. 397–400.Google Scholar
  33. 33.
    P. Godignon, X. Jorda, V. Banu, M. Vellvehi, J. Millan, P. Brosselard, D. Lopez, and J. Barbero: Power Semicond. Devices & IC’s (ISPSD), 2010 22nd Int. Symp., 2010, pp. 351–54.Google Scholar
  34. 34.
    F. Lang, H. Nakagawa, and H. Yamaguchi: Gold Bull., 2013, vol. 47, pp. 109–18.Google Scholar
  35. 35.
    S. Tanimoto and K. Matsui: IEEE Trans. Electron Devices, 2015, vol. 62, pp. 258–69.Google Scholar
  36. 36.
    S. Tanimoto, H. Tanisawa, K. Watanabe, K. Matsui, and S. Sato: Mater. Sci. Forum, 2013, vol. 740–742, pp. 1040–3.Google Scholar
  37. 37.
    R. Chanchani, C.D. Nordquist, R.H. Olsson, T. Peterson, R. Shul, C. Ahlers, T.A. Plut, and G.A. Patrizi: Proc. Electron. Components Technol. Conf., 2011, pp. 1604–09.Google Scholar
  38. 38.
    E.J. Schwalbach and P.W. Voorhees: Nano Lett., 2008, vol. 8, pp. 3739–45.Google Scholar
  39. 39.
    Y.-C. Shih, M. Murakami, E.L. Wilkie, and A.C. Callegari: J. Appl. Phys., 1987, vol. 62, pp. 582–90.Google Scholar
  40. 40.
    M. Pecht: Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability, John Wiley & Sons, Inc., New York, 1994.Google Scholar
  41. 41.
    M. Schwartz: Soldering - Understanding the Basics, ASM International, Materials Park, 2014.Google Scholar
  42. 42.
    J. Wang, C. Leinenbach, and M. Roth: J. Alloy. Compd., 2009, vol. 481, pp. 830–6.Google Scholar
  43. 43.
    E.S. Tasci, M.H.F. Sluiter, A. Pasturel, and N. Jakse: Phys. Rev. B, 2010, vol. 81, pp. 1–3.Google Scholar
  44. 44.
    L. Magagnin, R. Maboudian, and C. Carraro: J. Phys. Chem. B, 2002, vol. 106, pp. 401–7.Google Scholar
  45. 45.
    D.G. Popescu and M.A. Husanu: Rapid Res. Lett., 2013, vol. 7, pp. 274–7.Google Scholar
  46. 46.
    D.G. Popescu and M. A. Husanu: Thin Solid Films, 2014, vol. 552, pp. 241–9.Google Scholar
  47. 47.
    Y. Eichhammer, J. Roeck, N. Moelans, F. Iacopi, B. Blanpain, and M. Heyns: Arch. Met. Mater., 2008, vol. 53, pp. 1133–9.Google Scholar
  48. 48.
    A.P. Kryshtal, R. V. Sukhov, and A.A. Minenkov: J. Alloys Compd., 2012, vol. 512, pp. 311–5.Google Scholar
  49. 49.
    V. Chidambaram, E.P.J. Rong, G.C. Lip, and M.W.D. Rhee: Electron. Packag. Technol. Conf., IEEE, Singapore, 2013, pp. 202–07.Google Scholar
  50. 50.
    F.C. Campbell: Phase Diagrams - Understanding the Basics, ASM International, Ohio, 2012.Google Scholar
  51. 51.
    R.P. Elliott and F.A. Shunk: Bull. Alloy Phase Diagrams, 1980, vol. 1, pp. 51–4.Google Scholar
  52. 52.
    D. Olsen and H. Berg: IEEE Trans. Compon. Hybrids Manuf. Technol., 1979, vol. 2, pp. 257–63.Google Scholar
  53. 53.
    M.F. Sousa, S. Riches, C. Johnston, and P.S. Grant: High Temp., 2010, pp. 1–6.Google Scholar
  54. 54.
    Z.W. Chen, J.K.L. Lai, and C.H. Shek: J. Phys. D. Appl. Phys., 2006, vol. 39, pp. 4544–8.Google Scholar
  55. 55.
    D. Lu and C.P. Wong, eds.: Materials for Advanced Packaging, Springer-Verlag New York Inc., 2009.Google Scholar
  56. 56.
    MIL-STD-202G, 2002.Google Scholar
  57. 57.
    V. Chidambaram, J. Hald, R. Ambat, and J. Hattel: Jom, 2009, vol. 61, pp. 59–65.Google Scholar
  58. 58.
    G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.Google Scholar
  59. 59.
    W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.Google Scholar
  60. 60.
    W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.Google Scholar
  61. 61.
    W.D. MacDonald and T.W. Eagar: Met. Sci. Join., 1992, pp. 93–100.Google Scholar
  62. 62.
    W.D. MacDonald and T.W. Eagar: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 315–25.Google Scholar
  63. 63.
    L. Bernstein: J. Electrochem. Soc., 1966, vol. 113, pp. 1282–8.Google Scholar
  64. 64.
    L. Bernstein and H. Bartholomew: Trans. Metall. Soc. Aime, 1966, vol. 236, pp. 405–12.Google Scholar
  65. 65.
    T.A. Tollefsen, A. Larsson, O.M. Løvvik, and K. Aasmundtveit: Metall. Mater. Trans. B , 2012, vol. 43, pp. 397–405.Google Scholar
  66. 66.
    T.A. Tollefsen, O.M. Løvvik, K. Aasmundtveit, and A. Larsson: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2914–6.Google Scholar
  67. 67.
    K.E. Aasmundtveit, T.-T. Luu, H.-V. Nguyen, A. Larsson, and T.A. Tollefsen: Ind thjkjf jgjiof klfjefije. In: Intermetallic compounds - Formation and applications, M. Aliofkhazrai, ed., 1st edn., IntechOpen, London, 2018, pp. 43–72.Google Scholar
  68. 68.
    T.T. Luu, N. Hoivik, K. Wang, K.E. Aasmundtveit, and A.B. Vardøy: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5266–74.Google Scholar
  69. 69.
    S.A. Paknejad and S.H. Mannan: Microelectron. Reliab., 2017, vol. 70, pp. 1–11.Google Scholar
  70. 70.
    K.S. Siow: J. Electron. Mater., 2014, vol. 43, pp. 947–61.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Andreas Larsson
    • 1
    • 2
    Email author
  • Torleif A. Tollefsen
    • 3
  • Ole Martin Løvvik
    • 4
  • Knut E. Aasmundtveit
    • 2
  1. 1.Deparment of Applied PhysicsTECHNI ASBorreNorway
  2. 2.Deparment of Materials and Micro-integrationUniversity of South-Eastern Norway (USN)BorreNorway
  3. 3.TEGma ASDrammenNorway
  4. 4.Deparment of Sustainable Energy TechnologySINTEF IndustryOsloNorway

Personalised recommendations