Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hall–Petch Slope in Ultrafine Grained Al-Mg Alloys

Abstract

The Hall–Petch relation has long been used to relate the yield strength of a metal to its grain sizes in which the effectiveness of grain size strengthening in the metal is dictated by the Hall–Petch coefficient (slope). Therefore, understanding the microstructural dependence of the Hall–Petch slope would be very useful in designing new high-strength ultrafine grained (UFG) metallic materials. In this study, we investigated the microstructural factors affecting the Hall–Petch slope in UFG Al-Mg alloys with an average grain size range from 374 to 639 nm and different Mg contents of 0, 2.5, 5, and 7.5 at. pct. The rods prepared by extrusion of mechanically alloyed powder compacts were annealed for 5 hours at 380 °C, 420 °C, and 500 °C respectively followed by water quenching to produce the alloy samples in this study. The measured Hall–Petch slopes of the samples were found to increase with increasing Mg content and had higher values than those previously reported for Al(Mg) solid solutions with Mg concentrations comparable to the Mg contents in this study. Analysis of X-ray diffraction, transmission electron microscopy, and atom probe tomography experimental data as well as strengthening mechanisms demonstrates that the formation of nanoscale MgO dispersions plays a major role in the improved Hall–Petch slope observed in Al-Mg alloys.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Prog. Mater. Sci., 2018, vol. 94, pp. 462-540.

  2. 2.

    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

  3. 3.

    E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747.

  4. 4.

    R. Armstrong, I. Codd, R.M. Douthwaite and N.J. Petch: Philos. Mag., 1962, vol. 7, pp. 45-58.

  5. 5.

    N. Kamikawa, X. Huang, N. Tsuji and N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198-4208.

  6. 6.

    N. Hansen and P. Brondsted: Res. Mechanica, 1980, vol. 1, pp. 197-213.

  7. 7.

    E. Nembach: Scr. Mater., 1990, vol. 24, pp. 787-792.

  8. 8.

    G.S. Ansell and F.V. Lenel: Acta Metall., 1960, vol. 8, pp. 612-616.

  9. 9.

    C.L. Li, Q.S. Mei, J.Y. Li, F. Chen, Y. Ma and X.M. Mei: Scr. Mater., 2018, vol. 153, pp. 27-30.

  10. 10.

    N. Hansen: Acta Metall., 1969, vol. 17, pp. 637-642.

  11. 11.

    Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda: Mater. Sci. Eng. A, 2003, vol. 354, pp. 298-305.

  12. 12.

    H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. A, 1999, vol. 265, pp. 188-196.

  13. 13.

    M. Hutchison and R. Pascoe: Metal Sci. J., 1972, vol. 6, pp. 90-95.

  14. 14.

    K. Nakanishi and H. Suzuki: Trans. Japan Inst. Met., 1974, vol. 15, pp. 435-440.

  15. 15.

    R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov and X. Sauvage: Scr. Mater., 2010, vol. 63, pp. 949-952.

  16. 16.

    A. Khorsand-Zak, W.H. Abd-Majid, M.E. Abrishami and R. Yousefi: Solid State Sci., 2011, vol. 13, pp. 251-56.

  17. 17.

    A.R. Stokes and A.J.C. Wilson: Proc. Phys. Soc., 1944, vol. 56, pp. 174.

  18. 18.

    G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.

  19. 19.

    G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34-46.

  20. 20.

    M. Cohen: Rev. Sci. Instrum., 1935, vol. 6, pp. 68-74.

  21. 21.

    V.A. Lubarda: Mech. Mater., 2003, vol. 35, pp. 53-68.

  22. 22.

    J. Chen, L. Lu and K. Lu: Scr. Mater., 2006, vol. 54, pp. 1913-1918.

  23. 23.

    H. Baker: ASM Handbook, ASM International, Materials Park, 1992.

  24. 24.

    A. Devaraj, R. Colby, W.P. Hess, D.E. Perea and S. Thevuthasan: J. Phys. Chem. Lett., 2013, vol. 4, pp. 993-998.

  25. 25.

    H. Alihosseini, G. Faraji, A. Dizaji and K. Dehghani: Mater. Charact., 2012, vol. 68, pp. 14-21.

  26. 26.

    P. Bazarnik, Y. Huang, M. Lewandowska and T.G. Langdon: Mater. Sci. Eng. A, 2015, vol. 626, pp. 9-15.

  27. 27.

    H. Choi, S. Lee, J. Park and D. Bae: Scr. Mater., 2008, vol. 59, pp. 1123-1126.

  28. 28.

    M. Eizadjou, H.D. Manesh and K. Janghorban: J. Alloys Compds., 2009, vol. 474, pp. 406-415.

  29. 29.

    G.J. Fan, H. Choo, P.K. Liaw and E.J. Lavernia: Acta Mater., 2006, vol. 54, pp. 1759-1766.

  30. 30.

    M. Furukawa, Z. Horita, M. Nemoto, R. Valiev and T. Langdon: Acta Mater., 1996, vol. 44, pp. 4619-4629.

  31. 31.

    R. Hayes, D. Witkin, F. Zhou and E. Lavernia: Acta Mater., 2004, vol. 52, pp. 4259-4271.

  32. 32.

    Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31, pp. 691-701.

  33. 33.

    L. Hu, Y. Li, E. Wang and Y. Yu: Mater. Sci. Eng. A, 2006, vol. 422, pp. 327-332.

  34. 34.

    K.J. Kim, D.Y. Yang and J.W. Yoon: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7927-7930.

  35. 35.

    H.-J. Lee, J.-K. Han, S. Janakiraman, B. Ahn, M. Kawasaki and T.G. Langdon: J. Alloys Compds., 2016, vol. 686, pp. 998-1007.

  36. 36.

    A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam and T.G. Langdon: Mater. Sci. Eng. A, 2012, vol. 532, pp. 139-145.

  37. 37.

    S. Malopheyev and R. Kaibyshev: Mater. Sci. Eng. A, 2015, vol. 620, pp. 246-252.

  38. 38.

    S. Malopheyev, V. Kulitskiy and R. Kaibyshev: J. Alloys Compds., 2017, vol. 698, pp. 957-966.

  39. 39.

    B. Talebanpour, R. Ebrahimi and K. Janghorban: Mater. Sci. Eng. A, 2009, vol. 527, pp. 141-145.

  40. 40.

    B. Tolaminejad and K. Dehghani: Mater. Des., 2012, vol. 34, pp. 285-292.

  41. 41.

    N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scr. Mater., 2002, vol. 47, pp. 893-899.

  42. 42.

    T. Shanmugasundaram, M. Heilmaier, B. Murty and V.S. Sarma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7821-7825.

  43. 43.

    Z.C. Cordero, B.E. Knight and C.A. Schuh: Int. Mater. Rev., 2016, vol. 61, pp. 495-512.

  44. 44.

    R.W. Armstrong and R.M. Douthwaite: MRS Proc., 2011, vol. 362, pp. 41.

  45. 45.

    M. Wagenhofer, M. Erickson-Natishan, R.W. Armstrong and F.J. Zerilli: Scr. Mater., 1999, vol. 41, pp. 1177-1184.

  46. 46.

    M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev and T.G. Langdon: Philo. Mag. A, 1998, vol. 78, pp. 203-216.

  47. 47.

    R.E. Smallman and A. Ngan: Physical Metallurgy and Advanced Materials, Butterworth-Heinemann, Burlington, 2011, pp. 321-324.

  48. 48.

    J.C. Li: Trans. Metall. Soc. AIME, 1963, vol. 227, p. 239.

  49. 49.

    J.C. Li: Philos. Mag., 1969, vol. 19, pp. 189-198.

  50. 50.

    G.E. Dieter and D.J. Bacon (1986) Mechanical Metallurgy, McGraw-Hill, New York.

  51. 51.

    K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia and J.M. Schoenung: Acta Mater., 2014, vol. 62, pp. 141-155.

  52. 52.

    E. Huskins, B. Cao and K. Ramesh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1292-1298.

  53. 53.

    T. Mukai, K. Higashi and S. Tanimura: Mater. Sci. Eng. A, 1994, vol. 176, pp. 181-189.

  54. 54.

    Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander and H.-E. Ekström: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1999-2006.

  55. 55.

    M. Besterci: Scr. Metall., 1994, vol. 30, pp. 1145-1149.

  56. 56.

    T.H. Courtney: Mechanical Behavior of Materials, Waveland Press, Long Grove, 2005.

  57. 57.

    L.M. Brown and R.K. Ham: Strengthening methods in crystals, Elsevier, Amsterdam, 1971.

  58. 58.

    M.A. Meyers and K.K. Chawla: Mechanical behavior of materials, Cambridge University Press, Cambridge, 2009.

  59. 59.

    C.V. Di Leo and J.J. Rimoli: Scr. Mater., 2019, vol. 166, pp. 149-153.

  60. 60.

    R. Picu and Z. Xu: Scr. Mater., 2007, vol. 57, pp. 45-48.

  61. 61.

    H. Aboulfadl, J. Deges, P. Choi and D. Raabe: Acta Mater., 2015, vol. 86, pp. 34-42.

  62. 62.

    A. Cottrell and B. Bilby: Proc. Phys. Soc. A, 1949, vol. 62, pp. 49.

Download references

Acknowledgments

D.S. Zhou is grateful to the financial support from the Natural Science Foundation of China (Grant No. 51701036) and the Fundamental Research Funds for the Central Universities (Grant No. N160203001) to conduct this study. D.S. Zhou wishes to thank Prof. Dierk Raabe for his valuable discussion and comments.

Author information

Correspondence to Dengshan Zhou or Deliang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 20, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Wang, H., Saxey, D.W. et al. Hall–Petch Slope in Ultrafine Grained Al-Mg Alloys. Metall and Mat Trans A 50, 4047–4057 (2019). https://doi.org/10.1007/s11661-019-05329-3

Download citation