Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Local Deformation and Fracture Behavior of High-Strength Aluminum Alloys Under Hydrogen Influence

  • 338 Accesses

Abstract

The local deformation and fracture behavior of high-Zn Al-Zn-Mg(-Cu) alloys under hydrogen influence were investigated by in situ tests through synchrotron X-ray tomography. Intergranular and quasi-cleavage fractures were induced by hydrogen, and strain localization by the presence of cracks was not observed by 3D strain mapping. These results suggest that the strain localization at the crack tip is smaller than the measurement limit of 3D strain mapping. The average crack-tip-opening displacements, which are one of the crack driving forces specified by fracture mechanics, directly measured from the tomographic slice were 0.14 and 0.23 μm for intergranular cracks and quasi-cleavage cracks, respectively. The crack driving forces of the intergranular and quasi-cleavage cracks were small. The local deformation behavior at the crack tips was analyzed based on fracture mechanics. The local deformation field of the crack tip, which was characterized using the Rice–Drugan–Sham (RDS) solution rather than the Hutchinson–Rice–Rosengren (HRR) solution, was located within 20 μm of the crack tip, and its size was limited. The results of this work clarify that the intergranular and quasi-cleavage crack growths are caused by small driving forces; however, this behavior is not perfectly brittle, accompanying local deformation at the crack tip.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens: Acta Mater., 2004, vol. 52, pp. 4727–43.

  2. 2.

    M.S. Bhuiyan, H. Toda, Z. Peng, S. Hang, K. Horikawa, K. Uesugi, A. Takeuchi, N. Sakaguchi, and Y. Watanabe: Mater. Sci. Eng. A, 2016, vol. 655, pp. 221–8.

  3. 3.

    M. Hirano, K. Kobayashi, and H. Tonda: J. Soc. Mater. Sci. Japan, 2000, vol. 49, pp. 86–91.

  4. 4.

    R. Braun: Materwiss. Werksttech., 2007, vol. 38, pp. 674–89.

  5. 5.

    D. Najjar, T. Magnin, and T.J. Warner: Influence of Critical Surface Defects and Localized Competition between Anodic Dissolution and Hydrogen Effects during Stress Corrosion Cracking of a 7050 Aluminium Alloy, vol. 238, 1997.

  6. 6.

    S. Osaki and S. Haruyama: J. Jpn. Inst. Light Met., 2013, vol. 63, pp. 57–64.

  7. 7.

    S. Osaki, J. Ikeda, K. Kinoshita, Y. Sasaki, and A.M. Si: J. Jpn. Inst. Light Met., 2006, vol. 56, pp. 721–7.

  8. 8.

    S. Kuramoto, J. Okahana, and M. Kanno: Mater. Trans., 2001, 42, vol. 42.

  9. 9.

    M.S. Bhuiyan, Y. Tada, H. Toda, S. Hang, K. Uesugi, A. Takeuchi, N. Sakaguchi, and Y. Watanabe: Int. J. Fract., 2016, vol. 200, pp. 13–29.

  10. 10.

    M. Wang, E. Akiyama, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 398, pp. 37–46.

  11. 11.

    K. Takai and R. Watanuki: ISIJ Int., 2003, vol. 43, pp. 520–6.

  12. 12.

    H. Su, H. Toda, R. Masunaga, K. Shimizu, H. Gao, K. Sasaki, M.S. Bhuiyan, K. Uesugi, A. Takeuchi, and Y. Watanabe: Acta Mater., 2018, vol. 159, pp. 332–43.

  13. 13.

    R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

  14. 14.

    H. Toda, T. Hidaka, M. Kobayashi, K. Uesugi, A. Takeuchi, and K. Horikawa: Acta Mater., 2009, vol. 57, pp. 2277–90.

  15. 15.

    M. Felberbaum and M. Rappaz: Acta Mater., 2011, vol. 59, pp. 6849–60.

  16. 16.

    P.D. Lee and J.D. Hunt: Acta Mater., 2001, vol. 49, pp. 1383–98.

  17. 17.

    H. Toda, H. Oogo, K. Horikawa, K. Uesugi, A. Takeuchi, Y. Suzuki, M. Nakazawa, Y. Aoki, and M. Kobayashi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 765–76.

  18. 18.

    W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13, pp. 135–40.

  19. 19.

    P. Chao and R.A. Karnesky: Mater. Sci. Eng. A, 2016, vol. 658, pp. 422–8.

  20. 20.

    S.W. Smith and J.R. Scully: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 179–93.

  21. 21.

    T. Enomoto, R. Matsumoto, S. Taketomi, and N. Miyazaki: Zair. Soc. Mater. Sci. Japan, 2010, vol. 59, pp. 596–603.

  22. 22.

    K. Horikawa and K. Yoshida: Mater. Trans., 2004, vol. 45, pp. 315–8.

  23. 23.

    K. Horikawa, H. Okada, H. Kobayashi, and W. Urushihara: Mater. Trans., 2009, vol. 50, pp. 759–64.

  24. 24.

    H. Matsunaga, T. Usuda, K. Yanase, and M. Endo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1315–26.

  25. 25.

    T. Izumi and G. Itoh: Mater. Sci. Forum, 2007, vol. 539–543, pp. 475–80.

  26. 26.

    K. Ichitani, M. Kanno, and S. Kuramoto: ISIJ Int., 2003, vol. 43, pp. 496–504.

  27. 27.

    I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2323–41.

  28. 28.

    M. Yamaguchi, K.I. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, and H. Kaburaki: in Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 42, Springer US, 2011, pp. 330–9.

  29. 29.

    M. Yamaguchi, J. Kameda, K.-I. Ebihara, M. Itakura, and H. Kaburaki: Philos. Mag., 2012, vol. 92, pp. 1349–68.

  30. 30.

    Y. Mine, T. Tsumagari, and Z. Horita: Scr. Mater., 2010, vol. 63, pp. 552–5.

  31. 31.

    M. Nagumo: Mater. Sci. Technol., 2004, vol. 20, pp. 940–50.

  32. 32.

    T. Neeraj, R. Srinivasan, and J. Li: Acta Mater., 2012, vol. 60, pp. 5160–71.

  33. 33.

    M.L. Martin, J. A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson: Acta Mater., 2011, vol. 59, pp. 1601–06.

  34. 34.

    H. Toda, K. Shimizu, K. Uesugi, Y. Suzuki, and M. Kobayashi: Mater. Trans., 2010, vol. 51, pp. 2045–8.

  35. 35.

    M. Kobayashi, H. Toda, Y. Kawai, T. Ohgaki, K. Uesugi, D.S. Wilkinson, T. Kobayashi, Y. Aoki, and M. Nakazawa: Acta Mater., 2008, vol. 56, pp. 2167–81.

  36. 36.

    H. Su, T. Yoshimura, H. Toda, M.S. Bhuiyan, K. Uesugi, A. Takeuchi, N. Sakaguchi, and Y. Watanabe: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6077–89.

  37. 37.

    T. Ishikawa and R.B. McLellan: Acta Metall., 1986, vol. 34, pp. 1091–5.

  38. 38.

    Japan Institute of Light Metals, ed.: Structures and Properties of Aluminum, Tokyo, 1991.

  39. 39.

    J.R. Scully, G.A. Young, and S.W. Smith: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, its Characterisation and Effects on Particular Alloy Classes, Woodhead Publishing, 2012, pp. 707–68.

  40. 40.

    M. Yamaguchi, T. Tsuru, K. Ebihara, and M. Itakura: J. Jpn. Inst. Light Met., 2018, vol. 68, pp. 588–95.

  41. 41.

    A. Takeuchi, K. Uesugi, Y. Suzuki, S. Itabashi, and M. Oda: J. Synchrotron Rad, 2017, vol. 24, pp. 586–94.

  42. 42.

    A. Takeuchi, K. Uesugi, and Y. Suzuki: J. Phys. Conf. Ser., 2017, vol. 849, p. 012055.

  43. 43.

    H. Toda, S. Yamamoto, M. Kobayashi, K. Uesugi, and H. Zhang: Acta Mater., 2008, vol. 56, pp. 6027–39.

  44. 44.

    W.E. Lorensen, H.E. Cline, W.E. Lorensen, and H.E. Cline: in Proceedings of the 14th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’87, vol. 21, ACM Press, New York, New York, USA, 1987, pp. 163–9.

  45. 45.

    M. Yamaguchi, K.-I. Ebihara, M. Itakura, T. Tsuru, K. Matsuda, and H. Toda: Comput. Mater. Sci., 2019, vol. 156, pp. 368–75.

  46. 46.

    H. Toda, P.C.C. Qu, S. Ito, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Suzuki, and M. Kobayashi: Int. J. Cast Met. Res., 2014, vol. 27, pp. 369–77.

  47. 47.

    P.N. Anyalebechi: Cast Met., 2016, vol. 3, pp. 182–201.

  48. 48.

    M.S.I.T. MSIT®: in Light Metal Systems. Part 3, Springer-Verlag, Berlin/Heidelberg, pp. 1–21.

  49. 49.

    T. Izumi and G. Itoh: Mater. Trans., 2011, vol. 52, pp. 130–4.

  50. 50.

    G.A. Young and J.R. Scully: Acta Mater., 1998, vol. 46, pp. 6337–49.

  51. 51.

    H. Toda, Z.A.B. Shamsudin, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Suzuki, M. Nakazawa, Y. Aoki, and M. Kobayashi: Acta Mater., 2013, vol. 61, pp. 2403–13.

  52. 52.

    Y.S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, and M.P. Moody: Science, 2017, vol. 355, pp. 1196–9.

  53. 53.

    J. Takahashi, K. Kawakami, and Y. Kobayashi: Acta Mater., 2018, vol. 153, pp. 193–204.

  54. 54.

    H. Saitoh, Y. Iijima, and K. Hirano: J. Mater. Sci., 1994, vol. 29, pp. 5739–44.

  55. 55.

    F.G. Wei, T. Hara, and K. Tsuzaki: Metall. Mater. Trans. B, 2004, vol. 35, pp. 587–97.

  56. 56.

    D. Nguyen, A.W. Thompson, and I.M. Bernstein: Acta Metall., 1987, vol. 35, pp. 2417–25.

  57. 57.

    H. Gao, H. Su, K. Shimizu, C. Kadokawa, H. Toda, Y. Terada, K. Uesugi, and A. Takeuchi: Mater. Trans., 2018, vol. 59, pp. 1532–5.

  58. 58.

    T. Tsuru, M. Yamaguchi, H. Toda, and K. Shimizu: unpublished work.

  59. 59.

    P. Sofronis and R.M. McMeeking: J. Mech. Phys. Solids, 1989, vol. 37, pp. 317–50.

  60. 60.

    K. Hirayama, Y. Sek, T. Suzuki, H. Toda, K. Uesugi, A. Takeuchi, and W. Ludwig: in preparation.

  61. 61.

    H. Toda, E. Maire, S. Yamauchi, H. Tsuruta, T. Hiramatsu, and M. Kobayashi: Acta Mater., 2011, vol. 59, pp. 1995–2008.

  62. 62.

    J.R. RICE, W.J. DRUGAN, and T.L. SHAM: Astm Stp 700, 1980, pp. 189–221.

  63. 63.

    K.S. Chan: Metall. Trans. A, 1990, vol. 21, pp. 81–6.

  64. 64.

    K.S. Chan: Acta Metall., 1989, vol. 37, pp. 1217–26.

  65. 65.

    T. Ogura, T. Otani, A. Hirose, and T. Sato: Mater. Sci. Eng. A, 2013, vol. 580, pp. 288–93.

Download references

Acknowledgments

This research was supported by the Japan Science and Technology Agency (JST) under Collaborative Research Based on Industrial Demand “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials.” This research was supported in part by a grant from the Light Metal Educational Foundation, Japan. The synchrotron radiation experiments were performed at the BL20XU and the BL37XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2016A1199, 2016B1081, 2016A0076, 2016B0076). The authors also thank Dr. Takahiro Shikama in KOBELCO and the Japan Aluminium Association for providing and preparing the materials used.

Author information

Correspondence to Kazuyuki Shimizu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 28, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shimizu, K., Toda, H., Uesugi, K. et al. Local Deformation and Fracture Behavior of High-Strength Aluminum Alloys Under Hydrogen Influence. Metall and Mat Trans A 51, 1–19 (2020). https://doi.org/10.1007/s11661-019-05304-y

Download citation