Advertisement

Investigation into the Extrudability of a New Mg-Al-Zn-RE Alloy with Large Amounts of Alloying Elements

  • Sheng-Wen Bai
  • Gang FangEmail author
  • Jie Zhou
Article
  • 8 Downloads

Abstract

The present study was aimed at determining the extrudability of a newly developed Mg-Al-Zn-RE magnesium alloy with large amounts of alloying elements. The experimental and numerical investigation clearly showed that the extrudate temperature was a crucial factor in deciding if a critical temperature between 754 K and 768 K (481 °C and 495 °C) was reached during extrusion, above which hot shortness occurred. Under the extrusion conditions applied, dynamic recrystallization (DRX) occurred, leading to grain refinement from a mean grain size of 165 μm in the as-solid-solution-treated billet to 8.0 to 10.9 μm in the extruded rods. Second-phase particles, such as Mg17Al12 and Al11La3, were found to distribute on grain boundaries and aid in grain refinement. The mechanical properties of the extrudate were greatly influenced by the as-extruded microstructure and extrusion condition. As the initial billet temperature decreased, the ultimate tensile strength (UTS) and elongation of the alloy increased, while yield strength (YS) remained almost unchanged. At an initial billet temperature of 523 K (250 °C), a stem speed of 3.93 mm/s, and a reduction ratio of 29.8, the extruded magnesium alloy had a mean grain size of 8 μm. Its YS, UTS, and elongation reached 217 ± 3 MPa, 397 ± 7 MPa, and 20 ± 1.3 pct, respectively.

Notes

Acknowledgment

Two of the authors (GF and SWB) greatly appreciate the financial support of the National Natural Science Foundation of China (Project No. 51675300).

References

  1. 1.
    M.K. Kulekci: Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851–65.CrossRefGoogle Scholar
  2. 2.
    A.A. Luo: Int. Mater. Rev., 2004, vol. 49, pp. 13–30.CrossRefGoogle Scholar
  3. 3.
    E.F. Volkova: Met. Sci. Heat Treatment, 2006, vol. 48, pp. 473–78CrossRefGoogle Scholar
  4. 4.
    S. Yao and Y.F. Li: Sci. Total Environ., 2015, vol. 44, pp. 89–96.Google Scholar
  5. 5.
    H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, and G. Qin: J. Alloys Compds., 2016, vol. 663, pp. 321–31.CrossRefGoogle Scholar
  6. 6.
    D. Letzig, J. Swiostek, J. Bohlen, P. A. Beaven, and K.U. Kainer: Met. Sci. J., 2013, vol. 24, pp. 991–96.Google Scholar
  7. 7.
    A.A. Luo: J. Magn. Alloys, 2013, vol. 1, pp. 2–22.CrossRefGoogle Scholar
  8. 8.
    W.A. Monteiro, S.J. Buso, and L.V. da Silva: in New Features on Magnesium Alloys, W.A. Monteiro, ed., InTech, Rijeka, 2012, pp. 1–14.Google Scholar
  9. 9.
    S. You, Y. Huang, K.U. Kainer, and N. Hort: J. Magn. Alloys, 2017, vol. 5, pp. 239–53.CrossRefGoogle Scholar
  10. 10.
    Z. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, and N. Birbilis: Int. Mater. Rev., 2018, vol. 2, pp. 1–36.Google Scholar
  11. 11.
    C. Bettles and M. Barnett: Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, Woodhead Publishing, Philadelphia, PA, 2012, pp. 304–22.CrossRefGoogle Scholar
  12. 12.
    D.S. Yin, E.L. Zhang, and S.Y. Zeng: Trans. Nonferr. Met. Soc., 2008, vol. 18, pp. 763–68.CrossRefGoogle Scholar
  13. 13.
    W.N. Tang, S.S. Park, and B.S. You: Mater. Des., 2011, vol. 32, pp. 3537–43.CrossRefGoogle Scholar
  14. 14.
    S.M. Masoudpanah and R. Mahmudi: Mater. Sci. Eng. A, 2009, vol. 526, pp. 22–30.CrossRefGoogle Scholar
  15. 15.
    B. Zhang, Y. Wang, L. Geng, and C. Lu: Mater. Sci. Eng. A, 2012, vol. 539, pp. 56–60.CrossRefGoogle Scholar
  16. 16.
    J. Bohlen, S. Yi, D. Letzig, and K.U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7092–98.CrossRefGoogle Scholar
  17. 17.
    D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han: J. Alloys Compds., 2007, vol. 432, pp. 129–34.CrossRefGoogle Scholar
  18. 18.
    D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: J. Alloys Compds., 2006, vol. 426, pp. 155–61.CrossRefGoogle Scholar
  19. 19.
    N. Stanford and M.R. Barnett: Mater. Sci. Eng. A, 2008, vol. 496, pp. 399–408.CrossRefGoogle Scholar
  20. 20.
    M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura: Acta Mater., 2011, vol. 59, pp. 3646–58.CrossRefGoogle Scholar
  21. 21.
    X. Li, W. Qi, K. Zheng, and N. Zhou: J. Magn. Alloys, 2013, vol. 1, pp. 54–63.CrossRefGoogle Scholar
  22. 22.
    X. Zeng, Y. Zhang, C. Lu, W. Ding, Y. Wang, and Y. Zhu: J. Alloys Compds., 2005, vol. 395, pp. 213–19.CrossRefGoogle Scholar
  23. 23.
    N. Stanford, D. Atwell, and M.R. Barnett: Acta Mater., 2010, vol. 58, pp. 6773–83.CrossRefGoogle Scholar
  24. 24.
    J.B. Zhang, L.B. Tong, C. Xu, Z.H. Jiang, L.R. Cheng, S. Kamado, and H.J. Zhang: Mater. Sci. Eng. A, 2017, vol. 708, pp. 11–20.CrossRefGoogle Scholar
  25. 25.
    T. Homma, N. Kunito, and S. Kamado: Scripta Mater., 2009, vol. 61, pp. 644–47.CrossRefGoogle Scholar
  26. 26.
    M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura: Scripta Mater., 2005, vol. 53, pp. 799–803.CrossRefGoogle Scholar
  27. 27.
    Y. Chen, L. Hao, Y. Ruiyu, G. Liu, and T. Xia: Mater. Sci. Technol., 2014, vol. 30, pp. 495–500.CrossRefGoogle Scholar
  28. 28.
    A.A. Luo, C. Zhang, and A.K. Sachdev: Scripta Mater., 2012, vol. 66, pp. 491–94.CrossRefGoogle Scholar
  29. 29.
    T. Murai, S.I. Matsuoka, S. Miyamoto, and Y. Oki: J. Mater. Process. Technol., 2001, vol. 141, pp. 207–12.CrossRefGoogle Scholar
  30. 30.
    S. Ishihara, H. Shibata, K. Komano, T. Goshima, and Z.Y. Nan: Key Eng. Mater., 2007, vol. 353, pp. 291–94.CrossRefGoogle Scholar
  31. 31.
    B.P. Zhang, L. Geng, L.J. Huang, X.X Zhang, and C.C. Dong: Scripta Mater., 2010, vol. 63, pp. 1024–27.CrossRefGoogle Scholar
  32. 32.
    L.B. Tong, M.Y. Zheng, L.R. Cheng, D.P. Zhang, S. Kamado, J. Meng, and H.J. Zhang: Mater. Charact., 2015, vol. 104, pp. 66–72.CrossRefGoogle Scholar
  33. 33.
    S.H. Park, J.G. Jung, Y.M. Kim, and B.S. You: Mater. Lett., 2015, vol. 139, pp. 35–38.CrossRefGoogle Scholar
  34. 34.
    M. Shahzad and L. Wagner: Mater. Sci. Eng. A, 2009, vol. 506, pp. 141–47.CrossRefGoogle Scholar
  35. 35.
    Q. Chen, D. Shu, Z. Zhao, Z. Zhao, Y. Wang, and B. Yuan: Mater. Des., 2012, vol. 40, pp. 488–96.CrossRefGoogle Scholar
  36. 36.
    A. Singh, Y. Osawa, and H. Somekawa: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3232–40.CrossRefGoogle Scholar
  37. 37.
    S.H. Park, J.H. Bae, S.H. Kim, J. Yoon, and B.S. You: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5482–88.CrossRefGoogle Scholar
  38. 38.
    F. Bu, Q. Yang, K. Guan, X. Qiu, D. Zhang, and W. Sun: J. Alloys Compds., 2016, vol. 688, pp. 1241–50.CrossRefGoogle Scholar
  39. 39.
    X. Luo, S. Dang, and L. Kang: Adv. Mater. Sci. Eng., 2014, vol. 2014, pp. 1–7.Google Scholar
  40. 40.
    J. Mohammadi, M. Ghoreishi, and Y. Behnamian: Mater. Res., 2014, vol. 17, pp. 994–1002.CrossRefGoogle Scholar
  41. 41.
    C.M. Sellars and W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136–38CrossRefGoogle Scholar
  42. 42.
    L. Li, H. Zhang, J. Zhou, J. Duszczyk, G. Li, and Z.H. Zhong: Mater. Des., 2008, vol. 29, pp. 1190–98.CrossRefGoogle Scholar
  43. 43.
    G. Liu, J. Zhou, and J. Duszczyk: J. Mater. Process. Technol., 2008, vol. 200, pp. 185–98.CrossRefGoogle Scholar
  44. 44.
    L. Li, J. Zhou, and J. Duszczyk: J. Mater. Process. Technol., 2006, vol. 172, pp. 372–80.CrossRefGoogle Scholar
  45. 45.
    J. Zhou, L. Li, and J. Duszczyk: J. Mater. Process. Technol., 2003, vol. 134, pp. 383–97.CrossRefGoogle Scholar
  46. 46.
    T. Sheppard: Extrusion of Aluminum Alloys, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 227–52.CrossRefGoogle Scholar
  47. 47.
    M.P. Clade and T. Sheppard: Mater. Sci. Technol., 1993, vol. 9, pp. 313–18.CrossRefGoogle Scholar
  48. 48.
    W. Wei, C. Xu, J. Zhang, and X. Niu: China Foundry, 2014, vol. 11, pp. 157–62.Google Scholar
  49. 49.
    Y.S. Yang, J.C. Wang, T. Wang, C.M. Liu, and Z.M. Zhang: Trans. Nonferr. Met. Soc., 2014, vol. 24, pp. 76–81.CrossRefGoogle Scholar
  50. 50.
    N. Jiang, L.G. Meng, X.G. Zhang, L. Chen, C.F. Fang, and H. Hao: Rare Met., 2017.  https://doi.org/10.1007/s12598-016-0868-3.Google Scholar
  51. 51.
    X.D. Wang, W.B. Du, K. Liu, Z.H. Wang, and S.B. Li: J. Alloys Compds., 2012, vol. 522, pp. 78–84.CrossRefGoogle Scholar
  52. 52.
    J.C. Wurst and J.A. Nelson: J. Am. Ceram. Soc., 1972, vol. 55, pp. 109–09.CrossRefGoogle Scholar
  53. 53.
    H. Ding, L. Liu, S. Kamado, D. Wang, and Y. Kojima: J. Alloys Compds., 2008, vol. 456, pp. 400–06.CrossRefGoogle Scholar
  54. 54.
    S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi: Mater. Sci. Eng. A, 2007, vol. 456, pp. 52–57.CrossRefGoogle Scholar
  55. 55.
    S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi: Mater. Sci. Eng. A, 2007, vol. 456, pp. 52–57.CrossRefGoogle Scholar
  56. 56.
    O. Sitdikov and R. Kaibyshev: Mater. Trans., 2001, vol. 42, pp. 1928–37.CrossRefGoogle Scholar
  57. 57.
    A.G. Beer and M.R. Barnett: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1856–67.CrossRefGoogle Scholar
  58. 58.
    L. Wang, G. Fang, and L. Qian: Mater. Sci. Eng. A, 2018, vol. 711, pp. 268–83.CrossRefGoogle Scholar
  59. 59.
    J.D. Robson, D.T. Henry, and B. Davis: Acta Mater., 2009, vol. 57, pp. 2739–47.CrossRefGoogle Scholar
  60. 60.
    K.K. Deng, X.J. Wang, Y.W. Wu, X.S. Hu, K. Wu, and W.M. Gan: Mater. Sci. Eng. A, 2012, vol. 543, pp. 158–63.CrossRefGoogle Scholar
  61. 61.
    Q. Liao, X. Chen, Q. Lan, F. Ning, and Q. Le: Mater. Res. Express, 2018, vol. 5, pp. 1–10.Google Scholar
  62. 62.
    D.C. Foley, M. Al-Maharbi, K.T. Hartwig, I. Karaman, L.J. Kecskes, and S.N. Mathaudhu: Scripta Mater., 2011, vol. 64, pp. 193–96.CrossRefGoogle Scholar
  63. 63.
    S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, and V.H. Hammond: Scripta Mater., 2012, vol. 67, pp. 439–42.CrossRefGoogle Scholar
  64. 64.
    K. Cai, Z. Gao, Q. Zhu, Y. Jin, Y. Chai, and D. Fang: Rare Metal Mater. Eng., 2015, vol. 44, pp. 1489–93.Google Scholar
  65. 65.
    Q. Zhu, C. Fang, N. Li, L. Meng, Y. Wang, Y. Wu, and X. Zhang: Rare Metal Mater. Eng., 2013, vol. 42, pp. 771–75.Google Scholar
  66. 66.
    C. Che, Z. Cai, X. Yang, L. Cheng, and Y. Du: Mater. Sci. Eng. A, 2017, vol. 705, pp. 282–90.CrossRefGoogle Scholar
  67. 67.
    L. Fu, X.B. Wang, P.L. Gou, Q.C. Le, W. T. Jia, and Y. Tang: Adv. Eng. Mater., 2017, vol. 19, pp. 1700230.CrossRefGoogle Scholar
  68. 68.
    A.A. Luo, W. Wu, R.K. Mishra, L. Jin, A.K. Sachdev, and W. Ding: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2662–74.CrossRefGoogle Scholar
  69. 69.
    M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs: JOM, 2008, vol. 60, pp. 57–62.CrossRefGoogle Scholar
  70. 70.
    H. Borkar, M. Hoseini, and M. Pekguleryuz: Mater. Sci. Eng. A, 2012, vol. 549, pp. 168–75.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Tribology, Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations