Metallurgical and Materials Transactions A

, Volume 50, Issue 7, pp 3106–3120 | Cite as

Mapping Multivariate Influence of Alloying Elements on Creep Behavior for Design of New Martensitic Steels

  • Amit K. Verma
  • Jeffery A. Hawk
  • Laura S. Bruckman
  • Roger H. French
  • Vyacheslav Romanov
  • Jennifer L. W. CarterEmail author


Heritage data for the class of 9 to 12 wt pct Cr steels are studied using data science to quantify the statistically significant relationships among multiple processing/microstructure and performance variables. The effort is undertaken to find new martensitic steels for creep life of \(10^5{{\text { hours}}}\) or greater at 650 °C and 100 MPa using machine learning. Linear regression and lasso regression were utilized to identify alloying elements that contribute towards better creep strength. Visualization techniques such as t-distributed stochastic neighbor embedding and pair-wire element specific comparisons were utilized to explore information gaps that exist within the data and are in conflict with existing domain knowledge. Combining all results suggest that the next alloy design to be explored should be 9 wt pct Cr with high W (2 to 3 wt pct) and high Co (2 to 3 wt pct) for creep life of \(10^5\,\,{\text { hours}}\) or greater at 650 °C, 100 MPa.



This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. This project was funded by the Department of Energy (Grant DE-FE0028685), National Energy Technology Laboratory, an agency of the United States Government.


This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


  1. 1.
    U.S. Energy Information Administration: What is U.S. electricity generation by energy source? U.S. Energy Information Administration (EIA) Apr 2017.Google Scholar
  2. 2.
    J. Shingledecker, R. Purgert, and P. Rawls: in Proceeding the 7th International Conference on Advances in Materials Technology for Fossil Power Plants, 2013, pp. 41--52.Google Scholar
  3. 3.
    R. Viswanathan and J. Nutting: in Advanced Heat Resistant Steels for Power Generation: Conference Proceedings, 27--29 April 1998, San Sebastian, Spain: IOM Communications, 1999.Google Scholar
  4. 4.
    F. Abe: J. Pressure Vessel Technol. 2016, 138 (4), 040804CrossRefGoogle Scholar
  5. 5.
    V.K. Sikka: in Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, J.W. Davis and D.L. Michel, eds., Snowbird, UT, June 1983, pp. 19--23.Google Scholar
  6. 6.
    F. Abe, S. Nakazawa: MTA 1992, 23(11), 3025--3034.CrossRefGoogle Scholar
  7. 7.
    K. Yamada, M. Igarashi, S. Muneki, F. Abe: ISIJ Int. 2003, 43(9), 1438--1443.CrossRefGoogle Scholar
  8. 8.
    T. Horiuchi, M. Igarashi, F. Abe: ISIJ Int. 2002, 42(Suppl), S67--S71.CrossRefGoogle Scholar
  9. 9.
    Materials Genome Initiative for Global Competitiveness: Tech. rep. Jun. 2011.Google Scholar
  10. 10.
    S.M. Arnold, F. Holland, T.P. Gabb, M. Nathal, and T.T. Wong: The Coming ICME Data Tsunami and What Can be Done, American Institute of Aeronautics and Astronautics, 2013.Google Scholar
  11. 11.
    S.M. Arnold, F. Holland, and B.A. Bednarcyk: Robust Informatics Infrastructure Required for ICME: Combining Virtual and Experimental Data, American Institute of Aeronautics and Astronautics, 2014.Google Scholar
  12. 12.
    K. Rajan: Informatics for Materials Science and Engineering Data-Driven Discovery for Accelerated Experimentation and Application, 2013.Google Scholar
  13. 13.
    T.M. Mitchell: Machine Learning, 1st Edn, McGraw-Hill Education, New York, 1997.Google Scholar
  14. 14.
    H.K.D.H. Bhadeshia: ISIJ Int. 2001, 41(6), 626--640.CrossRefGoogle Scholar
  15. 15.
    H. K. D. H. Bhadeshia: ISIJ Int. 1999, 39(10), 966--979.CrossRefGoogle Scholar
  16. 16.
    I.E. Castelli, K.W. Jacobsen: Model. Simul. Mater. Sci. Eng. 2016, 5, 055007Google Scholar
  17. 17.
    G. James, D. Witten, T. Hastie, R. Tibshirani: An Introduction to Statistical Learning, Springer Texts in Statistics, Vol 103. Springer, New York, 2013.CrossRefGoogle Scholar
  18. 18.
    R. Klueh and D. Harries: in: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, R. Klueh and D. Harries, eds., ASTM International, West Conshohocken, PA, 2001, pp. 5--23. 10.1520/MONO10017M.Google Scholar
  19. 19.
    G. Dimmler, P. Weinert, E. Kozeschnik, H. Cerjak: Mater. Charact. 2003, 51 (5), 341--352.CrossRefGoogle Scholar
  20. 20.
    K. Maruyama, K. Sawada, J.-I. Koike: ISIJ Int. 2001, 41(6), 641--653.CrossRefGoogle Scholar
  21. 21.
    H. Semba, F. Abe: Energy Mater. 2006, 1(4), 238--244.CrossRefGoogle Scholar
  22. 22.
    H. Cerjak, P. Hofer, B. Schaffernak: Key Eng. Mater. 2000, 171174, 453--460.Google Scholar
  23. 23.
    K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, R. Komine: Mater. Sci. Eng. A 1999, 267(1), 19--25.CrossRefGoogle Scholar
  24. 24.
    V. Sklenicka, K. Kuchacova, M. Svoboda, L. Kloc, J. Bursik, A. Kroupa: Mater. Charact. 2003, 51(1), 35--48.CrossRefGoogle Scholar
  25. 25.
    K. Hald (2008) Int. J. Press. Vessels Pip. 85(1--2): 30--37.CrossRefGoogle Scholar
  26. 26.
    S. B. Singh, H. K. D. H. Bhadeshia: Mater. Sci. Eng. A 1998, 245 (1), 72--79.CrossRefGoogle Scholar
  27. 27.
    F. S. Buffington, K. Hirano, M. Cohen: Acta Metal. 1961, 9(5), 434--439.CrossRefGoogle Scholar
  28. 28.
    B. J. Ganesh, S. Raju, A. KumarRai, E. Mohandas, M. Vijayalakshmi, K. B. S. Rao, B. Raj (2011) Mater. Sci. Technol. 27(2), 500--512.CrossRefGoogle Scholar
  29. 29.
    J. Lecomte-Beckers, F. Schubert, and P.J. Ennis (Eds.): Materials for advanced power engineering 1998, Abstracts of the 6th Conference: no. v. 4 in Schriften des Forschungszentrums Jülich: Forschungszentrum Jülich, Jülich, Germany, 1998.Google Scholar
  30. 30.
    H. K. Danielsen, J. Hald: Calphad 2007, 31(4), 505--514.CrossRefGoogle Scholar
  31. 31.
    H. K. Danielsen, P. E. D. Nunzio, J. Hald, H. K. Danielsen, J. Hald: Metall Mater. Trans. A 2013, 44A (5), 2445--2452.Google Scholar
  32. 32.
    H. Finkler, M. Schirra: Steel Res. 1996, 67(8), 328--342CrossRefGoogle Scholar
  33. 33.
    X. Zhou, C. Liu, L. Yu, Y. Liu, H. Li: J. Mater. Sci. Technol. 2015, 31 (3), 235--242.CrossRefGoogle Scholar
  34. 34.
    K. Yadi: NIMS Creep Data Sheet (JIS SUS 403-B, 12cr, bar), Tech. Rep. 13B, NIMS, Tokyo, 1994.Google Scholar
  35. 35.
    H. Irie: NIMS Creep Data Sheet (JIS STBA 26, 9cr-1mo, tube), Tech. Rep. 19B, NIMS, Tsukuba, 1997.Google Scholar
  36. 36.
    H. Irie: NIMS Creep Data Sheet (1cr-0.5mo-0.25v and 12cr-1mo-1w-0.25v, bolting material), Tech. Rep. 44, NIMS: Tsukuba 1997.Google Scholar
  37. 37.
    H. Irie: NIMS Creep Data Sheet (JIS SUH 616-B, 12cr-1mo-1w-0.3v, bar), Tech. Rep. 10B, NIMS, Tsukuba 1998.Google Scholar
  38. 38.
    S. Matsuoka: NIMS Creep Data Sheet (KA-STBA 27, 9cr-2mo, tube), Tech. Rep. 46A, NIMS, Tsukuba 2005.Google Scholar
  39. 39.
    NIMS Creep Data Sheet: Tech. Rep. 48A, NIMS, Japan 2012.Google Scholar
  40. 40.
    NIMS Creep Data Sheet (KA-SUS 410 J3, 12cr-2w-0.4mo-1cu-Nb-V): No. 51a, Tech. rep., NIMS, Japan 2013.Google Scholar
  41. 41.
    NIMS Creep Data Sheet (KA-SUS 410j3 DTB, 12cr-2w-0.4mo-1cu-Nb-V (Tube)): No. 52a, Tech. rep., NIMS, Japan 2013.Google Scholar
  42. 42.
    NIMS Creep Data Sheet (9cr-1mo-V-Nb): Tech. Rep. 43A, NIMS, Japan 2014.Google Scholar
  43. 43.
    L. V. D. Maaten, G. Hinton: J. Mach. Learn. Res. 2008, 9(Nov), 2579--2605.Google Scholar
  44. 44.
    F. Masuyama: ISIJ Int. 2001, 41(6), 612--625.CrossRefGoogle Scholar
  45. 45.
    L. V. D. Maaten: J. Mach. Learn. Res. 2014, 15, 3221--3245.Google Scholar
  46. 46.
    R Core Team: in R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing, Vienna, Austria, 2017.Google Scholar
  47. 47.
    J. H. Krijthe: Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut Implementation, R Package version 0.13 2015.Google Scholar
  48. 48.
    V. M. Muggeo: R News 2008, 8(1), 20--25.Google Scholar
  49. 49.
    V. M. R. Muggeo: Stat. Med. 2003, 22(19), 3055--3071.CrossRefGoogle Scholar
  50. 50.
    T. Lumley based on Fortran code by Alan Miller: Leaps: Regression Subset Selection, R Package version 3.0 2017.Google Scholar
  51. 51.
    P. M. Narendra, K. Fukunaga: IEEE Trans. Comput. 1977, 9 (26), 917--922.Google Scholar
  52. 52.
    T. Hastie, R. Tibshirani, J. Friedman: in The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn., Springer Series in Statistics, Springer, New York, 2009.Google Scholar
  53. 53.
    J. Friedman, T. Hastie, R. Tibshirani: J Stat Softw 2010, 33 (1), 1--22.CrossRefGoogle Scholar
  54. 54.
    A. E. Hoerl, R. W. Kennard: Technometrics 1970, 12 (1), 55.CrossRefGoogle Scholar
  55. 55.
    R. Tibshirani (1996) J. R. Soc. Ser. B Methodol. 58(1), 267--288.Google Scholar
  56. 56.
    N. Simon, J. Friedman, T. Hastie, R. Tibshirani: J. Stat. Softw. 2011, 39 (5), 1–13.CrossRefGoogle Scholar
  57. 57.
    J. Friedman, T. Hastie, H. Höfling, R. Tibshirani: Ann. Appl. Stat. 2007, 1(2), 302--332.CrossRefGoogle Scholar
  58. 58.
    F. R. Larson, J. Miller: Trans. ASME 1952, 74, 765--771.Google Scholar
  59. 59.
    F. T. Furillo, S. Purushothaman, J. K. Tien: Scripta Metall. 1977, 11(6), 493--496.CrossRefGoogle Scholar
  60. 60.
    M. Tamura, F. Abe, K. Shiba, H. Sakasegawa, H. Tanigawa: Metall. Mater. Trans. A 2013, 44 (6), 2645--2661.CrossRefGoogle Scholar
  61. 61.
    J. W. Tukey: Biometrics 1949, 5 (2), 99--114.CrossRefGoogle Scholar
  62. 62.
    R. D. Cook: Technometrics 1977, 19 (1), 15--18.Google Scholar
  63. 63.
    F. Abe, R. Viswanathan, T.-U. Kern (eds.): Creep Resistant Steels, Woodhead Publishing, Cambridge, 2008.Google Scholar
  64. 64.
    D. C. Montgomery, E. A. Peck, G. G. Vining: Introduction to Linear Regression Analysis, Wiley, New York, 2012Google Scholar
  65. 65.
    J. A. Knottnerus, P. Tugwell: J. Clin. Epidemiol. 2013, 66 (10), 1061--1063.CrossRefGoogle Scholar
  66. 66.
    H. Nickel, Y. Wouters, M. Thiele, W. J. Quadakkers: Fresenius J. Anal. Chem. 1998, 361 (6-7), 540--544.CrossRefGoogle Scholar
  67. 67.
    F. Liu, M. Rashidi, L. Johansson, J. Hald, H.-O. Andrén: Scripta Mater. 2016, 113, 93--96.CrossRefGoogle Scholar
  68. 68.
    M. Subanović, J. Pirón, F. Zeller, M. Jarrar, A. Schneider: 2018, V001T01A008.Google Scholar
  69. 69.
    V. Rohr, M. Schütze, E. Fortuna, D. N. Tsipas, A. Milewska, F. J. Pérez: Mater. Corros. 2005, 56(12), 874--881.CrossRefGoogle Scholar
  70. 70.
    Y. Yamamoto, M. P. Brady, G. Muralidharan, B. A. Pint, P. J. Maziasz, D. Shin, B. Shassere, S. S. Babu, C.-H. Kuo: Development of Creep-Resistant, Alumina-Forming Ferrous Alloys for High-Temperature Structural Use, American Society of Mechanical Engineers, 2018, pp. V001T04A003Google Scholar
  71. 71.
    Y. Shen, H. Liu, Z. Shang, Z. Xu: J. Nucl. Mater. 2015, 465, 373--382.CrossRefGoogle Scholar
  72. 72.
    F. Abe, T. Horiuchi, M. Taneike, K. Sawada: Mater. Sci. Eng. A 2004, 378 (1--2), 299--303.CrossRefGoogle Scholar
  73. 73.
    F. Abe: Mater. Sci. Eng. A 2004, 387389, 565--569.CrossRefGoogle Scholar
  74. 74.
    L. Helis, Y. Toda, T. Hara, H. Miyazaki, F. Abe: Mater. Sci. Eng. A 2009, 510511, 88--94.CrossRefGoogle Scholar
  75. 75.
    G. George, H. Shaikh: in Corrosion of Austenitic Stainless Steels, Woodhead Publishing Series in Metals and Surface Engineering, H. S. Khatak, B. Raj, eds., Woodhead Publishing, Cambridge, 2002, pp. 1--36.Google Scholar
  76. 76.
    Y. F. Yin, R. G. Faulkner: Mater. Sci. Eng. A 2003, 344 (1), 92--102.CrossRefGoogle Scholar
  77. 77.
    J. Neyman (1937) Phil. Trans. R. Soc. Lond. A 236(767), 333--380.CrossRefGoogle Scholar
  78. 78.
    A. E. Fedoseeva, N. R. Dudova, R. O. Kaibyshev (2017) Phys. Metals Metallogr. 118(6), 591--600.CrossRefGoogle Scholar
  79. 79.
    F. Abe, T. Ohba, H. Miyazaki, Y. Toda, M. Tabuchi: Mater. High Temp. 2019, 0 (0), 1--11.Google Scholar
  80. 80.
    A. Fedoseeva, N. Dudova, R. Kaibyshev, A. Belyakov: Metals 2017, 7 (12), pp. 573.CrossRefGoogle Scholar
  81. 81.
    A. Fedoseeva, N. Dudova, R. Kaibyshev: Mater. Sci. Eng. A 2016, 654, 1--12.CrossRefGoogle Scholar
  82. 82.
    R. Mishnev, N. Dudova, R. Kaibyshev: Mater. Sci. Eng. A 2018, 713, 161--173.CrossRefGoogle Scholar
  83. 83.
    A. Fedoseeva, N. Dudova, R. Kaibyshev: J Mater Sci Mar. 2017, 52 (5), 2974--2988.CrossRefGoogle Scholar
  84. 84.
    A. Fedoseeva, I. Nikitin, N. Dudova, R. Kaibyshev: Mater. Sci. Eng. A 2018, 724, 29--36.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Amit K. Verma
    • 1
  • Jeffery A. Hawk
    • 2
  • Laura S. Bruckman
    • 1
    • 3
  • Roger H. French
    • 1
    • 3
  • Vyacheslav Romanov
    • 4
  • Jennifer L. W. Carter
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.National Energy Technology LaboratoryAlbanyUSA
  3. 3.SDLE Research CenterCase Western Research UniversityClevelandUSA
  4. 4.National Energy Technology LaboratoryPittsburghUSA

Personalised recommendations