Advertisement

A Transition from Fine to Coarse Lamellar Eutectics in the Undercooled Ni-29.8 At. Pct Si Eutectic Alloy: Experiments and Modeling

  • Fan Zhang
  • Haifeng WangEmail author
  • M. Kolbe
  • Jianbao Zhang
  • Qing Zhou
  • D. M. Herlach
Article
  • 5 Downloads

Abstract

In contrast to the classical eutectic growth models, according to which the eutectic spacing decreases invariably with undercooling, an anomalous transition from fine to coarse lamellar eutectics was found in the undercooled Ni-29.8 at. pct Si eutectic alloy. In this study, the growth kinetics, recalescence processes, and grain orientations were analyzed. A sharp increase of the growth velocity at an undercooling of about 100 K was found. The recalescence front transited in sequence from a diffuse one with tips, to a diffuse one without tips and then to a sharp one. The microstructures changed from a mixture of directional rod-shaped γ-Ni31Si12 grains and fine lamellar eutectics to solely coarse lamellar eutectics. Coarse lamellar eutectics were found to be formed by rapid solidification of primary directional rod-shaped Ni31Si12 intermetallic compound and subsequent epitaxial growth of secondary Ni2Si intermetallic compound, being consistent with the predictions of eutectic–dendritic and dendritic growth models. Coarse anomalous eutectics at low undercooling were formed by fragmentation of fine lamellar eutectics and their subsequent coarsening. At high undercooling, they were formed by decoupled-eutectic growth.

Notes

Acknowledgments

H.F. Wang would like to thank the Huo Yingdong Young Teacher Fund (No. 151048), the Aeronautical Science Foundation of China (No. 2015ZF53066), the Science Fund for Distinguished Young Scholars from Shaanxi province (2018-JC007), and the Fundamental Research Funds for the Central Universities and the support of Alexander von Humboldt Foundation for a research fellowship.

References

  1. 1.
    W. Kurz, D.J. Fisher: Inter. Mater. Rev., 1979, vol. 24, pp. 177-204.CrossRefGoogle Scholar
  2. 2.
    Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li: Sci. Rep., 2014, vol. 4, pp. 6200.CrossRefGoogle Scholar
  3. 3.
    Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li: Acta Mater., 2017, vol. 124, pp. 143-150.CrossRefGoogle Scholar
  4. 4.
    D.M. Herlach: Mater. Sci. Eng. R., 1994, vol. 12, pp. 177-272.CrossRefGoogle Scholar
  5. 5.
    K.A. Jackson, J.D. Hunt: Trans. AIME., 1966, vol. 236, pp. 1129-1142.Google Scholar
  6. 6.
    R. Trivedi, P. Magnin, W. Kurz: Acta Metall., 1987, vol. 35, pp. 971-980.CrossRefGoogle Scholar
  7. 7.
    N. Wang, Y.E. Kalay, R. Trivedi: Acta Mater., 2011, vol. 59, pp. 6604-6619.CrossRefGoogle Scholar
  8. 8.
    R. Trivedi, N. Wang: Acta Mater., 2012, vol. 60, pp. 3140-3152.CrossRefGoogle Scholar
  9. 9.
    H.L. Huang, C.L. Yang, Q.J. Song, K. Ye, F. Liu: J. Appl. Phys., 2016, vol. 120, pp. 043905.CrossRefGoogle Scholar
  10. 10.
    J.F. Li, Y.H. Zhou: Acta Mater., 2005, vol. 53, pp. 2351-2359.CrossRefGoogle Scholar
  11. 11.
    L. Liu, J.F. Li, Y.H. Zhou: Acta Mater., 2009, vol. 57, pp. 1536-1545.CrossRefGoogle Scholar
  12. 12.
    X.X. Wei, X. Lin, W. Xu, Q.S. Huang, M. Ferry, J.F. Li, Y.H. Zhou: Acta Mater., 2015, vol. 95, pp. 44-56.CrossRefGoogle Scholar
  13. 13.
    M. Schwarz, A. Karma, K. Eckler, D.M. Herlach: Phys. Rev. Lett., 1994, vol. 73, pp. 1380-1383.CrossRefGoogle Scholar
  14. 14.
    A. Karma: Inter. J. Non-Equilibrium Process., 1998, vol. 11, pp. 201-233.Google Scholar
  15. 15.
    H.F. Wang, F. Liu, Y.M. Tan: Acta Mater., 2011, vol. 59, pp. 4787-4797.CrossRefGoogle Scholar
  16. 16.
    R. Goetzinger, M. Barth, D.M. Herlach: Acta Mater., 1998, vol. 46, pp. 1647-1655.CrossRefGoogle Scholar
  17. 17.
    B.B. Wei, G.C. Yang, Y.H. Zhou: Acta Metall. Mater., 1991, vol. 39, pp. 1249-1258.CrossRefGoogle Scholar
  18. 18.
    M.J. Li, K. Nagashio, T. Ishikawa, S. Yoda, K. Kuribayashi: Acta Mater., 2005, vol. 53, pp. 731–741.CrossRefGoogle Scholar
  19. 19.
    J.F. Li, W.Q. Jie, S. Zhao, Y.H. Zhou: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1806-1816.CrossRefGoogle Scholar
  20. 20.
    C. Yang, J. Gao, Y.K. Zhang, M. Kolbe, D.M. Herlach: Acta Mater., 2011, vol. 59, pp. 3915-3926.CrossRefGoogle Scholar
  21. 21.
    X. Lin, Y.Q. Cao, Z.T. Wang, J. Cao, L.L. Wang, W.D. Huang: Acta Mater., 2017, vol. 126, pp. 210-220.CrossRefGoogle Scholar
  22. 22.
    C.R. Clopet, R.F. Cochrane, A.M. Mullis: Acta Mater., 2013, vol. 61, pp. 6894-6902.CrossRefGoogle Scholar
  23. 23.
    A.M. Mullis, C.R. Clopet: Acta Mater., 2018, vol. 145, pp. 186-195.CrossRefGoogle Scholar
  24. 24.
    M.J. Li, K. Nagashio, T. Ishikawa, A. Mizuno, M. Adachi, M. Watanabe, S. Yoda, K. Kuribayashi, Y. Katayama: Acta Mater., 2007, vol. 56, pp. 2514-2525.CrossRefGoogle Scholar
  25. 25.
    Y.K. Zhang, J. Gao, M. Kolbe, S. Klein, C. Yang, H. Yasuda, D.M. Herlach, C.A. Gandin: Acta Mater., 2013, vol. 61, pp. 4861-4873.CrossRefGoogle Scholar
  26. 26.
    Y.P. Lu, X. Lin, G.C. Yang, J.J. Li, Y.H. Zhou: J. Appl. Phys., 2008, vol. 104, pp. 013535.CrossRefGoogle Scholar
  27. 27.
    F. Zhang, C. Lai, J.B. Zhang, Y.C. Zhang, Q. Zhou, H.F. Wang: J. Cryst. Growth., 2018, vol. 495, pp. 37-45.CrossRefGoogle Scholar
  28. 28.
    H.F. Wang, F. Liu, D.M. Herlach: J. Cryst. Growth., 2014, vol. 389, pp. 68-73.CrossRefGoogle Scholar
  29. 29.
    H.F. Wang, F. Liu, D.M. Herlach: J. Mater. Sci., 2015, vol. 50, pp. 176-188.CrossRefGoogle Scholar
  30. 30.
    W.W. Kuang, H.F. Wang, F. Liu, S.L. Sobolev: J. Mater. Sci., 2016, vol. 51, pp. 2141-2152.CrossRefGoogle Scholar
  31. 31.
    W.W. Kuang, C. Karrasch, H.F. Wang, F. Liu, D.M. Herlach: Scripta Mater., 2015, vol. 105, pp. 34-37.CrossRefGoogle Scholar
  32. 32.
    H.F. Wang, F. Liu, D.M. Herlach: J. Mater. Sci., 2014, vol. 49, pp. 1537-1543.CrossRefGoogle Scholar
  33. 33.
    H. Wang, D.M. Herlach, R.P. Liu: EPL., 2014, vol. 105, pp. 36001.CrossRefGoogle Scholar
  34. 34.
    P. Nash, A. Nash: J. Phase Equilib., 1987, vol. 8, pp. 6-14.Google Scholar
  35. 35.
    Y. Du, J.C. Schuster: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2409-2417.CrossRefGoogle Scholar
  36. 36.
    J.C. Schuster, Y. Du: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1795-1803.CrossRefGoogle Scholar
  37. 37.
    E.G. Castle, A.M. Mullis, R.F. Cochrane: Acta Mater., 2014, vol. 66, pp. 378–387.CrossRefGoogle Scholar
  38. 38.
    E.G. Castle, A.M. Mullis, R.F. Cochrane: Acta Mater., 2014, vol. 77, pp. 76–84.CrossRefGoogle Scholar
  39. 39.
    H.F. Wang, F. Liu, G.C. Yang: J. Mater. Res., 2010, vol. 25, pp. 1963-1974.CrossRefGoogle Scholar
  40. 40.
    A.K. Dahle, D.H.S. John, H.J. Thevik, L. Arnberg: Metall. Mater. Trans. B, 1999, vol. 30, pp. 287-293.CrossRefGoogle Scholar
  41. 41.
    K. Dragnevski, A.M. Mullis, D.J. Walker, R.F. Cochrane: Acta Mater., 2002, vol. 50, pp. 3743-3755.CrossRefGoogle Scholar
  42. 42.
    J. Svoboda, I. Turek, F.D. Fischer: Phil. Mag., 2005, vol. 85, pp. 3699-3707.CrossRefGoogle Scholar
  43. 43.
    F.D. Fischer, J. Svoboda, H. Petryk: Acta Mater., 2014, vol. 67, pp. 1-20.CrossRefGoogle Scholar
  44. 44.
    S. Li, J. Zhang, P. Wu: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3748-3754.CrossRefGoogle Scholar
  45. 45.
    S. Li, D.Y. Li, S.C. Liu, Z.H. Gu, W. Liu, J.W. Huang: Acta Mater., 2015, vol. 83, pp. 310-317.CrossRefGoogle Scholar
  46. 46.
    P.K. Galenko, S. Reutzel, D.M. Herlach, D. Danilov, B. Nestler: Acta Mater., 2007, vol. 55, pp. 6834-6842.CrossRefGoogle Scholar
  47. 47.
    P.K. Galenko, S. Reutzel, D.M. Herlach, S.G. Fries, I. Steinbach, M. Apel: Acta Mater., 2009, vol. 57, pp. 6166-6175.CrossRefGoogle Scholar
  48. 48.
    M.J. Aziz, W.J. Boettinger: Acta Metall. Mater., 1994, vol. 42, pp. 527-537.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Fan Zhang
    • 1
  • Haifeng Wang
    • 1
    Email author
  • M. Kolbe
    • 2
  • Jianbao Zhang
    • 1
  • Qing Zhou
    • 1
  • D. M. Herlach
    • 2
    • 3
  1. 1.State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal MaterialsNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft-und Raumfahrt (DLR)CologneGermany
  3. 3.Ruhr-Universität BochumFakultät für Physik und AstronomieBochumGermany

Personalised recommendations