The Role of Intercritical Annealing in Enhancing Low-temperature Toughness of Fe-C-Mn-Ni-Cu Structural Steel

  • Xiaohui Xi
  • Jinliang Wang
  • Xing Li
  • Liqing ChenEmail author
  • Zhaodong Wang


In this article, an intercritical annealing (IA) process was introduced to the conventional quenching and tempering (QT) heat treatment for a Fe-C-Mn-Ni-Cu structural steel. The corresponding microstructures and mechanical properties of this steel were characterized by scanning electron microscope (SEM) equipped with electron back scattering diffraction (EBSD) and mechanical properties test. The results showed that IA process could lead to a considerable increase in low-temperature toughness for this steel. A mixed microstructure was obtained after IA process had been adopted containing intercritical ferrite and tempered martensite together with a small amount of retained austenite. This steel with mixed microstructure exhibited tensile strength of 961 MPa, relatively lower yield strength of 830 MPa, and a lower yield-to-tensile ratio (Y/T ratio) of 0.86, while a higher total elongation of 22.2 pct was achieved. The reason for this could be attributed to the multiple effect of multi-phase microstructure and deformation-induced transformation of the retained austenite during tensile deformation. The excellent low-temperature toughness was characterized by the Charpy impact energy as 183 J at 153 K (− 120 °C), which was associated with highly stable retained austenite and finer microstructure through reversed transformation during intercritical annealing treatment. These can be considered to increase the resistance to crack initiation and propagation and decrease the ductile-brittle transformation temperature (DBTT).



This work is financially supported by the National Key Research and Development Program of China (13th Five-Year Plan) with the Contract No. 2016YFB0300601.


  1. 1.
    K. Otani, H. Muraoka, S. Tsuruta, K. Hattori, H. Kawazoe: Nippon Steel Technical Report, 1993, vol. 58, pp. 1-8.Google Scholar
  2. 2.
    D. Liu, Q. Li, T. Emi: Metall. Mater. Trans. A, 2010, vol. 42, pp. 1349-61.Google Scholar
  3. 3.
    H.B. Liu, H.Q. Zhang, J.F. Li: Int. J. Press. Vessel. Pip., 2018, vol. 168, pp. 200-09.CrossRefGoogle Scholar
  4. 4.
    G.K. Tirumalasetty, M.A. van Huis, C.M. Fang, Q. Xu, F.D. Tichelaar, D.N. Hanlon, J. Sietsma, H.W. Zandbergen: Acta Mater., 2011, vol. 59, pp. 7406-15.CrossRefGoogle Scholar
  5. 5.
    Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda: ISIJ Int., 2004, vol. 44, pp. 1945-51.CrossRefGoogle Scholar
  6. 6.
    M.Y. Chen, M. Gouné, M. Verdier, Y. Bréchet, J.R. Yang: Acta Mater., 2014, vol. 64, pp. 78-92.CrossRefGoogle Scholar
  7. 7.
    S Vaynman, D Isheim, R PrakashKolli, SP Bhat, DN Seidman, ME Fine (2008) Metall. Mater. Trans. A 39:363-73.CrossRefGoogle Scholar
  8. 8.
    Y. Zhou, J. Chen, Y. Xu, Z. Liu: J Mater Sci Technol., 2013, vol. 29, pp. 168-74.CrossRefGoogle Scholar
  9. 9.
    Y. Zhou, T. Jia, X. Zhang, Z. Liu, R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 626, pp. 352-61.CrossRefGoogle Scholar
  10. 10.
    H. Tagawa, T. Taira, K. Ume, T. Ishihara: Offshore Technology Conference, Houston, Texas, 1981, pp. 235-43.Google Scholar
  11. 11.
    Z.J. Xie, Y.P. Fang, Y. Cui, X.M. Wang, C.J. Shang, R.D.K. Misra: Mater. Sci. Technol., 2016, vol. 32, pp. 691-96.CrossRefGoogle Scholar
  12. 12.
    A. Nagao, T. Ito, T. Obinata: JFE Technical Report, 2008, vol. 11, pp. 13-18.Google Scholar
  13. 13.
    C. Sun, S.L. Liu, R.D.K. Misra, Q. Li, D.H. Li: Mater. Sci. Eng. A, 2018, vol. 711, pp. 484-91.CrossRefGoogle Scholar
  14. 14.
    S.P. Rawal, J. Gurland: Metall. Trans. A, 1977, vol. 8, pp. 691-98.CrossRefGoogle Scholar
  15. 15.
    Y. Nagai, H. Fukami, H. Inoue, A. Date, T. Nakashima, A. Kojima, A. Toshihiko: Nippon Steel Technical Report, 2004, vol. 90, pp. 14-19Google Scholar
  16. 16.
    D. Liu, B. Cheng, M. Luo: ISIJ Int., 2011, vol. 51, pp. 603-11.CrossRefGoogle Scholar
  17. 17.
    P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1-6.CrossRefGoogle Scholar
  18. 18.
    J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao: Scr. Mater., 2010, vol. 63, pp. 815-18.CrossRefGoogle Scholar
  19. 19.
    J.I. Kim, C.K. Syn, J.W. Morris: Metall. Trans. A, 1983, vol. 14, pp. 93-103.CrossRefGoogle Scholar
  20. 20.
    R.L. Miller: Metall. Mater. Trans. B, 1972, vol. 3, pp. 905-12.CrossRefGoogle Scholar
  21. 21.
    J. Hu, L. Du, W. Xu, J. Zhai, Y. Dong, Y. Liu, R.D.K. Misra: Mater. Charact., 2018, vol. 136, pp. 20-28.CrossRefGoogle Scholar
  22. 22.
    J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4516-21.CrossRefGoogle Scholar
  23. 23.
    W.H. Zhou, V.S.A. Challa, H. Guo, C.J. Shang, R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 620, pp. 454-62.CrossRefGoogle Scholar
  24. 24.
    Z.J. Xie, G. Han, W.H. Zhou, C.Y. Zeng, C.J. Shang: Mater. Charact., 2016, vol. 113, pp. 60-66.CrossRefGoogle Scholar
  25. 25.
    Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, C.J. Shang: Mater. Des., 2014, vol. 59, pp. 193-98.CrossRefGoogle Scholar
  26. 26.
    H Shirazi, G Miyamoto, S HosseinNedjad, H GhasemiNanesa, M NiliAhmadabadi, T Furuhara (2013) J Alloy and Compd. 577:S572-S77.CrossRefGoogle Scholar
  27. 27.
    S. Wang, H. Yu, H. Gu, T. Zhou, L. Wang: Mater. Sci. Eng. A, 2019, vol. 744, pp. 299-304.CrossRefGoogle Scholar
  28. 28.
    H. Liu, L.X. Du, J. Hu, H.Y. Wu, X.H. Gao, R.D.K. Misra: J. Alloy. Compd., 2017, vol. 695, pp. 2072-82.CrossRefGoogle Scholar
  29. 29.
    R. Song, D. Ponge, D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881-92.CrossRefGoogle Scholar
  30. 30.
    T. Hanamura, F. Yin, K. Nagai: ISIJ Int., 2004, vol. 44, pp. 610-17.CrossRefGoogle Scholar
  31. 31.
    R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1-17.CrossRefGoogle Scholar
  32. 32.
    N.S. Stoloff: Chapter 1-Effects of alloying on fracture characteristics, Elsevier Inc., USA, 1969, pp. 1-81.Google Scholar
  33. 33.
    N.J. Petch: Proceedings of an International Conference on the Atomic Mechanisms of Fracture, Swampscott, Mass, 1959, pp. 54–64.Google Scholar
  34. 34.
    G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai: Acta Mater., 2014, vol. 76, pp. 425-33.CrossRefGoogle Scholar
  35. 35.
    G. Thomas: Metall. Trans. A, 1978, vol. 9, pp. 439-50.CrossRefGoogle Scholar
  36. 36.
    T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi: Acta Mater., 2015, vol. 84, pp. 330-38.CrossRefGoogle Scholar
  37. 37.
    P.J. Brofman, G.S. Ansell: Metall. Mater. Trans. A, 1978, vol. 9, pp. 879-80.CrossRefGoogle Scholar
  38. 38.
    A.A. Gorni: Steel Forming and heat treating handbook, São Vicente SP, Brazil, 2015.Google Scholar
  39. 39.
    M.T. Kim, T.M. Park, K.H. Baik, W.S. Choi, P.P. Choi, J. Han: Acta Mater., 2019, vol. 164, pp. 122-34.CrossRefGoogle Scholar
  40. 40.
    B. Fultz, J.I. Kim, Y.H. Kim, H.J. Kim, G.O. Fior, J.W. Morris: Metall. Trans. A, 1985, vol. 16, pp. 2237-49.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xiaohui Xi
    • 1
  • Jinliang Wang
    • 1
  • Xing Li
    • 1
  • Liqing Chen
    • 1
    Email author
  • Zhaodong Wang
    • 1
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations