Effect of Test Temperature on Tensile Behavior of Ti-5Al-5V-2Mo-1Cr-1Fe (α+β) Titanium Alloy with Initial Microstructures in Hot Forged and Heat Treated Conditions

  • V. Anil KumarEmail author
  • R. K. Gupta
  • V. S. K. Chakravadhanula
  • A. Gourav Rao
  • M. J. N. V. Prasad
  • S. V. S. N. Murty


Ti-5Al-5V-2Mo-1Cr-1Fe (Ti-55211) is another popular (α+β)-Ti alloy which exhibits good hardenability and high strength due to the formation of α′ martensite. In the present study, this alloy in the as-forged and heat treated conditions was investigated to evaluate the tensile behavior as a function of test temperature (from room temperature to near its β transus). There was significant loss of ductility with a marginal improvement in tensile strength at room temperature upon heat treating the as-forged alloy near the β transus temperature. This is attributed to the solid solution strengthening, formation of α′ laths, change in shape and distribution of α phase during heat treatment. The alloy in both as-forged and heat treated conditions exhibited typical superplasticity characteristics with large elongations to failure (~ 200 to 230 pct) associated with high strain rate sensitivity values (0.2 to 0.4) at the testing temperature near its β transus. Microstructural investigation revealed that the morphology of the α-phase gets transformed from lamellar or acicular into equiaxed/globular with random deformation texture in both conditions during tensile deformation near β transus. It was found that the mode of deformation operating at temperature of 1123 K was found to be dynamic recrystallization (DRX) of α-phase, whereas dynamic recovery (DRV) of β-phase occurred at 1173 K.



The authors are grateful to Director, VSSC for granting permission to publish this work. The authors express their sincere thanks for the microscopy support extended by MCD team, VSSC. Authors would like to acknowledge National facility for Texture and OIM Lab and CoEST Deformation Processing Lab at IIT Bombay for EBSD and Dilatometer supports, respectively.


  1. 1.
    G. Lutjering and J.C. Williams: Titanium—Engineering Materials and Processes, 2nd ed., Springer, Berlin Heidelberg, 2007, pp. 19-250.Google Scholar
  2. 2.
    I.J. Polmear: Light alloys, 4th ed., Butterworth-Heinemann, Burlington, 2006, pp. 299-334.Google Scholar
  3. 3.
    G. Lutjering: Mater. Sci. Eng. A, 1998, vol. 243, pp. 32-45.CrossRefGoogle Scholar
  4. 4.
    D. Banerjee and J.C. Williams: Acta Mater, 2013, vol. 61, pp. 844-79.CrossRefGoogle Scholar
  5. 5.
    Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen and D.L. Chen: J. Alloys. Compd, 2017, vol. 718, pp. 170-81.CrossRefGoogle Scholar
  6. 6.
    R.W. Cahn and P. Haasen: Physical Metallurgy, 4th ed., North Holland, Amsterdam, 1996, pp. 1374-82.Google Scholar
  7. 7.
    O. Grong and H.R. Shercliff: Prog. Mater. Sci, 2002, vol. 47, pp. 163-282.CrossRefGoogle Scholar
  8. 8.
    S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang and D.R. Barker: Met. Mater. Trans. A, 2003, vol. 34, pp. 2377-86.CrossRefGoogle Scholar
  9. 9.
    S.L. Semiatin, V. Seetharaman and I. Weiss: J. Mat, 1997, vol. 6, pp. 33-9.Google Scholar
  10. 10.
    W.D. Brewer, R.K. Bird and T.A. Wallace: Mater. Sci. Eng. A, 1998, vol. 243, pp. 299-304.CrossRefGoogle Scholar
  11. 11.
    N.E. Paton and C.H. Hamilton: Met. Mater. Trans. A, 1979, vol. 10, pp. 241-50.CrossRefGoogle Scholar
  12. 12.
    A.K. Ghosh and C.H. Hamilton: Met. Mater. Trans. A, 1979, vol. 10, pp. 699-706.CrossRefGoogle Scholar
  13. 13.
    A. Arieli and A.K. Mukherjee: Mat. Sci. Eng. A, 1980, vol. 45, pp. 61-80.CrossRefGoogle Scholar
  14. 14.
    O.A. Kaibyshev, I.V. Kazachkov and R.M. Galeev: J. Mater. Sci., 1981, vol. 16, pp. 2501-06.CrossRefGoogle Scholar
  15. 15.
    R.R. Bhat, S. Tamiriskandala and D.B. Miracle: J. Mater. Eng. Perform, 2014, vol. 13, pp. 653-9.CrossRefGoogle Scholar
  16. 16.
    O.M. Ivasyshyn and A.V. Aleksandrov: Mater. Sci, 2008, vol. 44, pp. 311-27.CrossRefGoogle Scholar
  17. 17.
    L. Zhiqiang, Z. Bing and C. Wei: MATEC Web. Conf., 2015, vol. 21, pp. 1005-17.CrossRefGoogle Scholar
  18. 18.
    J. Liu, Y.A. Lan, M. Guo, S. Castagne and B.W. Chua: Int. J. Mfg. Tech, 2013, vol. 69, pp. 1097-1104.CrossRefGoogle Scholar
  19. 19.
    H. Matsumoto, B. Liu, S.H. Lee, Y. Li, K. Sato, Y. Ono and A. Chiba: Suppl. Proceed.: Mater. Prop. Char. Model., vol. 2, TMS, Wiley, Hoboken, NJ, 2012, pp. 873–76.Google Scholar
  20. 20.
    J. Luo, M. Li, W. Yu and H. Li: Mater. Des, 2010, vol. 31, pp. 741-8.CrossRefGoogle Scholar
  21. 21.
    G.C. Morgan and C. Hammond: Mater. Sci. Eng. A, 1987, vol. 86, pp. 159-77.CrossRefGoogle Scholar
  22. 22.
    H. Fujii: Mater. Sci. Eng. A, 1998, vol. 243, pp. 103-8.CrossRefGoogle Scholar
  23. 23.
    R.K. Gupta, V. Anil Kumar, U.V. Gururaja, K. Subramani, M. Uday Prakash, K.V.A. Chakravarthi, P. Ram Kumar and P. Sarkar: Met. Sci. Heat. Treat., 2015, vol.57, pp. 169-74.CrossRefGoogle Scholar
  24. 24.
    R.K. Gupta, V. Anil Kumar, Christy Mathew and G. Sudarsana Rao: Mater. Sci. Eng. A, 2016, vol. 662, pp. 537-50.CrossRefGoogle Scholar
  25. 25.
    R.K. Gupta, V. Anil Kumar and Sumit Chhangani: J. Mater. Eng. Perform, 2016, vol. 25, pp.1492-1501.CrossRefGoogle Scholar
  26. 26.
    V. Anil Kumar, R.K. Gupta and G. Sudarsana Rao: J. Mater. Eng. Perform, 2015, vol. 24, pp. 24-31.CrossRefGoogle Scholar
  27. 27.
    V. Anil Kumar, R.K. Gupta, J. Paul Murugan, J. Srinath, Sushant K. Manwatkar and S.V.S. Narayana Murty: Mater. Sci. Forum, 2015, vol. 830-831, pp. 123-26.CrossRefGoogle Scholar
  28. 28.
    P.J. Bania: J. Mater, 1994, vol. 41, pp. 16–9.Google Scholar
  29. 29.
    ASTM E8, E8M: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2016.
  30. 30.
    W.S. Rasband: ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,, 1997–2015.
  31. 31.
    Z. Guo, S. Malinov and W. Sha: Comput. Mater. Sci, 2005, vol. 32, pp. 1-12.CrossRefGoogle Scholar
  32. 32.
    V.N. Moiseyev: Titanium Alloys - Russian Aircraft and Aerospace Applications, CRC Press, 1975, pp.174-5.Google Scholar
  33. 33.
    H.M. Flower: Mater. Sci. Tech, 1990, vol.6, pp. 1081-92.CrossRefGoogle Scholar
  34. 34.
    M. Ahmed, D.G. Savvakin, O.M. Ivasishin and E.V. Pereloma: Mater. Sci. Eng. A, 2013, vol. 576, pp. 167-77.CrossRefGoogle Scholar
  35. 35.
    J.C. Chesnutt and F.H. Froes: Met. Trans. A, 1977, vol. 8, pp. 1013-7.CrossRefGoogle Scholar
  36. 36.
    F.J. Gil, M.P. Ginebra, J.M. Manero and J.A. Planell: J. Alloys. Compd, 2001, vol. 329, pp. 142-52.CrossRefGoogle Scholar
  37. 37.
    M. Zhou, Y.C. Lin, J. Deng and Y.Q. Jiang: Mater. Des, 2014, vol. 59, pp. 141–50.CrossRefGoogle Scholar
  38. 38.
    P. Lin, Z. He, S. Yuan and J. Shen: Mater. Sci. Eng. A, 2012, vol. 556, pp. 617–24.CrossRefGoogle Scholar
  39. 39.
    Z.C. Sun, L.S. Zheng and H. Yang: Mater. Char, 2014, vol. 90, pp. 71–80.CrossRefGoogle Scholar
  40. 40.
    W.T. Qu, X.G. Sun, S.X. Hui, Z.G. Wang and Y. Li: Rare. Met, 2018, Scholar
  41. 41.
    Z. Liu, P. Li, L. Xiong, T. Liu and L. He: Mater. Sci. Eng. A, 2017, vol. 680, pp. 259-69.CrossRefGoogle Scholar
  42. 42.
    N.G. Jones and M. Jackson, Mater. Sci. Tech, 2011, vol. 27, pp. 1025-32.CrossRefGoogle Scholar
  43. 43.
    J.H. Kim, S.L. Semiatin and C.S. Lee: Mater. Sci. Eng. A, 2008, vol. 485, pp. 601-12.CrossRefGoogle Scholar
  44. 44.
    J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang and J.S. Li: Mater. Des, 2013, vol. 49, pp. 945-52.CrossRefGoogle Scholar
  45. 45.
    T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas and Y.V.R.K. Prasad: Scripta Mater, 1999, vol. 41, pp. 283–8.CrossRefGoogle Scholar
  46. 46.
    G. Gurewitz, N. Ridley and A.K. Mukherjee: Proceed. ICF Int. Symp. Fract. Mech, 1983, vol. 1, pp. 12–25.Google Scholar
  47. 47.
    J.S. Kim, Y.W. Chang and C.S. Lee: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 217–26.CrossRefGoogle Scholar
  48. 48.
    E. Alabort, P. Kontis, D. Barba, K. Dragnevski and R.C. Reed: Acta Mater, 2016, vol. 105, pp. 449-63CrossRefGoogle Scholar
  49. 49.
    S. Li, Y. Lv, X. Zhang and K. Zhou: Metals, 2018, vol. 8, 467. Scholar
  50. 50.
    C.H. Park, Y. G. Ko, J.W. Park and C.S. Lee: Mater. Sci. Eng. A, 2008, vol. 496, pp. 150-8.CrossRefGoogle Scholar
  51. 51.
    Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiors and W.G. Frazier: J. Mater. Sci. Tech, 2000, vol. 16, pp. 511-16.CrossRefGoogle Scholar
  52. 52.
    Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiors and W.G. Frazier: J. Eng. Mater. Tech, 2001, vol. 123, pp. 355-60.CrossRefGoogle Scholar
  53. 53.
    P. Griffiths and C. Hammond: Acta Metal., 1972, vol. 20, pp. 935-45.CrossRefGoogle Scholar
  54. 54.
    Y. Qu, M. Wang, L. Lei, X. Huang, L. Wang, J Qin, W. Lu and D. Zhang, Mater. Sci. Eng. A, 2012, vol. 555, pp. 99-105.CrossRefGoogle Scholar
  55. 55.
    M. Motyka, J. Sieniawski and W Ziaja: Mater. Sci. Eng. A, 2014, vol. 599, pp. 57-63.CrossRefGoogle Scholar
  56. 56.
    E. Alabort, D. Putman and R.C. Reed: Acta Mater, 2015, vol. 95, pp. 428-42.CrossRefGoogle Scholar
  57. 57.
    H. Matsumoto, T. Nishihara, Y. Iwagaki, T. Shiraishi and Y. Ono: Mater. Sci. Eng. A, 2016, vol. 661, pp. 68-78.CrossRefGoogle Scholar
  58. 58.
    Z.X. Chang, S.J. Qu, A.H. Feng, J. Shen and D.L. Chen: J. Alloys. Compd, 2017, vol. 718, pp. 170-81.CrossRefGoogle Scholar
  59. 59.
    Q. Chao, P.D. Hodgson and H. Beladi: Met. Mater. Trans. A, 2014, vol. 45, pp. 2659-71.CrossRefGoogle Scholar
  60. 60.
    X. Zhang, L. Cao, Y. Zhao, Y. Chen, X. Tian and J. Deng: Mater. Sci. Eng. A, 2013, vol. 560, pp. 700-4.CrossRefGoogle Scholar
  61. 61.
    G.C. Wang and M.W. Fu: J. Mater. Proc. Tech, 2007, vol. 192-193, pp. 555-60.CrossRefGoogle Scholar
  62. 62.
    S. Roy and S. Suwas: Mater. Sci. Eng. A, 2013, vol. 574, pp. 205-17.CrossRefGoogle Scholar
  63. 63.
    Q.J. Sun, G.C. Wang and M.Q. Li: Mater. Des, 2011, vol. 32, pp. 3893-9.CrossRefGoogle Scholar
  64. 64.
    B.R. Qiang, H. Xu and C.C. Xiao: Trans. Nonferr. Met. Soc. China, 2006, vol. 16, pp. 274-80CrossRefGoogle Scholar
  65. 65.
    Z. Du, J. Liu, G. Li, K. Lv, G. Liu, L. Yan and Y. Chen: Mater. Sci. Eng. A, 2016, vol. 650, pp. 414-21.CrossRefGoogle Scholar
  66. 66.
    A.H. Sheikhali, M. Morakkabati, S.M. Abbasi and A. Rezaei: Int. J. Mater. Res, 2013, vol. 104, pp. 1122-7.CrossRefGoogle Scholar
  67. 67.
    A. Salam and C. Hammond: J. Mater. Sci, 2005, vol. 40, pp. 5475-82.CrossRefGoogle Scholar
  68. 68.
    M.J. Tan, X.J. Zhu, S. Thiruvarudchelvan and K.M. Liew: Arch. Mater. Sci. Eng, 2007, vol. 28, pp. 717-21.Google Scholar
  69. 69.
    N.X. An, H. Zhan, L.H. Qun, Y.D. Qing, C.T. Ying, W.B. Feng, G. Qi and W.D. Chun: Mater. Sci. Eng. A, 2014, vol. 613, pp. 306-16.CrossRefGoogle Scholar
  70. 70.
    H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabrigue, T.J. Konno and A. Chiba: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1512-20.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • V. Anil Kumar
    • 1
    • 3
    Email author
  • R. K. Gupta
    • 1
  • V. S. K. Chakravadhanula
    • 1
  • A. Gourav Rao
    • 2
  • M. J. N. V. Prasad
    • 3
  • S. V. S. N. Murty
    • 1
  1. 1.Materials and Mechanical Entity, Vikram Sarabhai Space CentreISROTrivandrumIndia
  2. 2.Naval Materials Research LaboratoryDRDOMumbaiIndia
  3. 3.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations