Metallurgical and Materials Transactions A

, Volume 50, Issue 6, pp 2690–2701 | Cite as

Creep of Cu-Bi Alloys with High Bi Content Near and Above Melting Temperature of Bi

  • Shobhit P. Singh
  • Dipali Sonawane
  • Praveen KumarEmail author


Cu-Bi alloy with high Bi content can be used for thermal surge protection and energy storage. For these applications, creep at high temperatures, including temperatures above the melting temperature of Bi, Tm,Bi, becomes important. Accordingly, the creep behavior of Cu-Bi alloys, comprising 30 and 40 vol pct Bi, was studied under compression at temperatures above and below Tm,Bi. At 200 °C, which is below Tm,Bi, Cu-Bi showed a stress exponent of ~ 4 at high stresses and ~ 1 at low stresses. Finite element analysis revealed that the creep behavior of Cu-Bi at 200 °C was predominantly governed by Bi. On the other hand, at temperatures higher than Tm,Bi, Cu-Bi showed a short transient stage at high stresses, followed by sudden failure of the material. However, at low stresses, the sample first continued to expand and then started to accumulate compressive strain. A qualitative model based on interaction between liquid Bi and Cu is developed to explain the observed creep behavior at temperatures higher than Tm,Bi. The results obtained here shed light on the creep behavior of alloys with constituents having significantly different creep behavior and containing a non-reacting liquid phase.



The authors would like to thank the Board of Research in Nuclear Sciences (BRNS) for the financial support under Grant DAEO 0162. The help of Mr. Binay Kumar Deb Barman of Indian Institute of Science, Bangalore with a few of the experiments is greatly appreciated.


  1. 1.
    B.K.D. Barman, S.P. Singh, and P. Kumar: Mater. Sci. Eng. A Struct., 2016, vol 666, pp. 339-49.CrossRefGoogle Scholar
  2. 2.
    S.P. Singh, B.K.D. Barman, and P. Kumar: Mater. Sci. Eng. A Struct., 2016, vol 677, pp. 140-52.CrossRefGoogle Scholar
  3. 3.
    G.M. Pharr, P.S. Godavarti, and B.L. Vaandrager: J. Mater. Sci., 1989, vol 24, pp. 784-92.CrossRefGoogle Scholar
  4. 4.
    D.J. Chakrabarti and D.E. Laughlin, Bull. Alloy Phase Diagr., 1984, vol 5, pp. 148-55.CrossRefGoogle Scholar
  5. 5.
    S.M. Clarke, J.P.S. Walsh, M. Amsler, C.D. Malliakas, T. Yu, S. Goedecker, Y. Wang, C. Wolverton, and D.E. Freedman, Angew. Chem. Int. Edit., 2016, vol 55, pp. 13446-9.CrossRefGoogle Scholar
  6. 6.
    B.L. Vaandrager and G.M. Pharr, Scripta Metall. Mater., 1984, vol 18, pp. 1337-9.CrossRefGoogle Scholar
  7. 7.
    G. B. Schaffer, T.B. Sercombe, and R.N. Lumley, Mater. Chem. Phys., 2001, vol 67, pp. 85-91.CrossRefGoogle Scholar
  8. 8.
    JK Koike, MK Maruyama, H. Oikawa, Mater. Sci. Eng. A: Struct, 1997, vol 234, pp. 525-8.CrossRefGoogle Scholar
  9. 9.
    H. Iwasaki, T. Mori, M. Mabuchi, and K. Higashi, Acta Mater., 1998, vol 46, pp. 6351-60.CrossRefGoogle Scholar
  10. 10.
    J. L. Murray, Bull. Alloy Phase Diagr., 1982, vol 3, pp. 60-74.CrossRefGoogle Scholar
  11. 11.
    F.K. Ojebuoboh, Jom-J. Min. Met. Mat S., 1992, vol 44, pp. 46-9.CrossRefGoogle Scholar
  12. 12.
    D.E.J. Armstrong, A.J. Wilkinson, and S.G. Roberts, Phil. Mag. Lett., 2011, vol 91, pp. 394-400.CrossRefGoogle Scholar
  13. 13.
    G. Themelis, S. Chikwembani, and J. Weertman, Mater. Charact., 1990, vol 24, pp. 27-40.CrossRefGoogle Scholar
  14. 14.
    S. Chikwembani and J. Weertman, Metall. Mater. Trans. A, 1989, vol 20, pp. 1221-31.CrossRefGoogle Scholar
  15. 15.
    R. Schweinfest, A. T. Paxton, and M. W. Finnis, Nature, 2004, vol 432, pp. 1008.CrossRefGoogle Scholar
  16. 16.
    G. Duscher, M.F. Chisholm, U. Alber, and M. Rühle, Nat Mater., 2004, vol 3, pp. 621-6.CrossRefGoogle Scholar
  17. 17.
    S. Divinski, M. Lohmann, C. Herzig, B. Straumal, B. Baretzky, and W. Gust, Phys. Rev. B, 2005, vol 71, pp. 104.CrossRefGoogle Scholar
  18. 18.
    B.L. Vaandrager and G.M. Pharr, Acta Metall. Mater., 1989, vol 37, pp. 1057-66.CrossRefGoogle Scholar
  19. 19.
    M.E. Kassner and K. Smith, J. Mater. Sci. Technol., 2014, vol 3, pp. 280-8.Google Scholar
  20. 20.
    Y. Eckstein, A.W. Lawson, and D.H. Reneker, J. Appl. Phys., 1960, vol 31, pp. 1534-8.CrossRefGoogle Scholar
  21. 21.
    V.P. Goltsev, S.I. Zhukova, and V.M. Anishchik, Phys. Status Solidi A, 1986, vol 96, pp. 135-9.CrossRefGoogle Scholar
  22. 22.
    J.P. Poirier (1985) Creep of crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge University Press, Cambridge, pp. 27-33.CrossRefGoogle Scholar
  23. 23.
    R. Raj, G. Rixecker, and M. Valentinotti, Metall. Mater. Trans. A, 2007, vol 38, pp. 628-37.CrossRefGoogle Scholar
  24. 24.
    P. Kumar, I. Dutta, and M.S. Bakir, J. Electron. Mater., 2012, vol 41, pp. 322-35.CrossRefGoogle Scholar
  25. 25.
    R.M. Tahboub, M.E. Guindy, and H.D. Merchant, Oxid. Met., 1979, vol 13, pp. 545-56.CrossRefGoogle Scholar
  26. 26.
    T.N. Rhodin Jr., J. Am. Chem. Soc., 1950, vol 72, pp. 5102-6.CrossRefGoogle Scholar
  27. 27.
    PANalytical X’Pert HighScore Plus Software Database, PANalytical Inc. (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Shobhit P. Singh
    • 1
  • Dipali Sonawane
    • 1
  • Praveen Kumar
    • 1
    Email author
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations