Replacement of Ni by Mn in Commercial High-Ni Austenitic Cast Steels Used for High-Performance Turbocharger Housings

  • Jisung Yoo
  • Won-Mi Choi
  • Byeong-Joo Lee
  • Gi-Yong Kim
  • Hyungjun Kim
  • Won-Doo Choi
  • Yong-Jun Oh
  • Sunghak LeeEmail author


High-Ni austenitic cast steels were fabricated by replacing the expensive Ni content by inexpensive Mn in a commercial DIN 1.4849 steel (0.4C-2.0Mn-1.5Si-20Cr-38Ni-1.5Nb (wt pct)), and their high-temperature tensile properties were enhanced by controlling the volume fraction and distribution of carbides. The 14-pct-Ni-containing steel showed the highest total fraction and most homogeneous distribution of carbides due to the smallest cell size, which played a role in improving high-temperature properties far better than those of the DIN 1.4849 steel.


The World Class 300 Project R&D Program supported the present work and the BK21 Plus Center for Creative Industrial Materials.


  1. 1.
    H. Wen-Tai and R.W.K. Honeycombe: Mater. Sci. Tech., 1985, vol. 1, pp. 385-89.CrossRefGoogle Scholar
  2. 2.
    X.Q. Wu, H.M. Jing, Y.G. Zheng, Z.M. Yao, W. Ke, and Z.Q. Hu: Mater. Sci. Eng. A, 2000, vol. A293, pp. 252-60.CrossRefGoogle Scholar
  3. 3.
    M. Ekström, and S. Jonsson: Mater. Sci. Eng. A, 2014, vol. 616, pp. 78-87.CrossRefGoogle Scholar
  4. 4.
    L.H. De Almeida, A.F. Ribeiro, and I. Le May: Mater. Charact., 2002, vol. 49, pp. 219-29.CrossRefGoogle Scholar
  5. 5.
    Y.-J. Kim, H. Jang, and Y.-J. Oh: Mater. Sci. Eng. A, 2009, vol. A526, pp. 244-49.CrossRefGoogle Scholar
  6. 6.
    F. Masuyama: ISIJ Int., 2001, vol. 41, pp. 612-25.CrossRefGoogle Scholar
  7. 7.
    T. Sourmail: Mater. Sci. Tech., 2001, vol. 17, pp. 1-14.CrossRefGoogle Scholar
  8. 8.
    M. Sumita, T. Hanawa, and S.H. Teoh: Mater. Sci. Eng. C, 2004, vol. 24, pp. 753-60.CrossRefGoogle Scholar
  9. 9.
    G.D. Almeida-Soares, L.H. Almeida, T.L. Silveira, and I. Lay: Mater. Charact., 1992, vol. 29, pp. 387-96.CrossRefGoogle Scholar
  10. 10.
    S.S. Wang, D.L. Peng, L. Chang, and X.D. Hu: Mater. Design, 2013, vol. 50, pp. 174-80.CrossRefGoogle Scholar
  11. 11.
    H.Y. Ha, T.H. Lee, and S. Kim, Met. Mater. Int., 2017, vol. 23, pp. 115-25.CrossRefGoogle Scholar
  12. 12.
    D.B. Park, M.Y. Huh, W.S. Jung, J.Y. Suh, J.H. Shim, and S.C. Lee: J. Alloy. Comp., 2013, vol. 574, pp. 532-538.CrossRefGoogle Scholar
  13. 13.
    B.Peng, H. Zhang, J. Hong, J. Gao, H. Zhang, J. Li, and Q. Wang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4424-30.CrossRefGoogle Scholar
  14. 14.
    S. Heino: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1893-905.CrossRefGoogle Scholar
  15. 15.
    J. Guo, L. Liu, Y. Feng, S. Liu, X. Ren, and Q. Yang: Met. Mater. Int., 2017, vol. 23, pp. 313-19.CrossRefGoogle Scholar
  16. 16.
    A.A. Kaya, P. Krauklis, and D.J. Young: Mater. Charact., 2002, vol. 49, pp. 11-21.CrossRefGoogle Scholar
  17. 17.
    S. Haro, L. López, T.R. Velasco, and B. Viramontes: Mater. Chem. Phys., 2000, vol. 66, pp. 90–6.CrossRefGoogle Scholar
  18. 18.
    S. Jung, Y.H. Jo, C. Jeon, W.-M. Choi, B.-J. Lee, Y.-J. Oh, G.-Y. Kim, S. Jang, and S. Lee: Mater. Sci. Eng. A, 2017, vol. 682, pp. 147-55.CrossRefGoogle Scholar
  19. 19.
    F. Ohmenhäuser, C. Schwarz, S. Thalmair, and H.S. Evirgen: Mater. Design, 2014, vol. 64, pp. 631-39.CrossRefGoogle Scholar
  20. 20.
    T. Seifert, C. Schweizer, M. Schlesinger, M. Möser, and M. Eibl: Int. J. Mat. Res., 2010, vol. 101, pp. 942-50.CrossRefGoogle Scholar
  21. 21.
    A. Schaeffler: Met. Progr., 1949, vol. 56, pp. 680, 680b.Google Scholar
  22. 22.
    L.A. Dobrzanski, Steel. Res., 1986, vol. 57, pp. 37-45.CrossRefGoogle Scholar
  23. 23.
    WHO (2008) Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohohocken, PA.Google Scholar
  24. 24.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273-312.CrossRefGoogle Scholar
  25. 25.
    B.-J. Lee, and B. Sundman: TCFE2000: The Thermo-Calc Steels Database, KTH, Stockholm, 1999, pp. 2-81.Google Scholar
  26. 26.
    K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.-J. Lee: J. Alloy. Comp., 2010, vol. 505, pp. 217-23.CrossRefGoogle Scholar
  27. 27.
    S. Jung, S.S. Sohn, W.-M. Choi, B.-J. Lee, Y.-J. Oh, S. Jang, and S. Lee: Met. Mater. Int., 2017, vol. 23, pp. 43-53.CrossRefGoogle Scholar
  28. 28.
    T.W. Clyne, and W. Kurz: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 965-71.CrossRefGoogle Scholar
  29. 29.
    I. Ohnaka: T. Iron. Steel. I. JPN., 1986, vol. 12, pp. 1045-51.CrossRefGoogle Scholar
  30. 30.
    D.J. Seol, Y.M. Won, T.-J. Yeo, K.H. Oh, J.K. Park, and C.H. Yim: ISIJ Int., 1999, vol. 39, pp. 91-8.CrossRefGoogle Scholar
  31. 31.
    P.J. Wray: Metall. Mater. Trans. A, 1984, vol. 15, pp. 2041-58.CrossRefGoogle Scholar
  32. 32.
    S.J. Ko, and Y.-J. Kim: Mater. Sci. Eng. A, 2012, vol. 534, pp. 7-12.CrossRefGoogle Scholar
  33. 33.
    M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H.G. Armaki, and K. Maruyam: Mater. Sci. Eng. A, vol. 510–511, pp. 162-68 (2009).CrossRefGoogle Scholar
  34. 34.
    R.L. Klueh, P.J. Maziasz, and E.H. Lee: Mater. Sci. Eng. A, vol. 102, pp. 115-24 (1987).CrossRefGoogle Scholar
  35. 35.
    S. Jung, Y.H. Jo, C. Jeon, W.-M. Choi, B.-J. Lee, Y.-J. Oh, G.-Y. Kim, S. Jang, and S. Lee: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 568-74.CrossRefGoogle Scholar
  36. 36.
    S.R. Chen, H.A. Davies, and W.T. Rainforth: Acta. Mater., 1999, vol. 47, pp. 4555-69.CrossRefGoogle Scholar
  37. 37.
    C.K. Kim, J.I. Park, J.H. Ryu, and S. Lee: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 481-92.CrossRefGoogle Scholar
  38. 38.
    J.W. Park, H.C. Lee, and S. Lee: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 399-409.CrossRefGoogle Scholar
  39. 39.
    A. Wiengmoon: Naresuan. Univ. Eng. J, 2011, vol. 6, pp. 64-70.Google Scholar
  40. 40.
    S.W. Kim, U.J. Lee, K.D. Woo, and D.K. Kim: Mater. Sci. Tech, 2003, vol. 19, pp 1727-32.CrossRefGoogle Scholar
  41. 41.
    Y.J. Kang, J.C. Oh, H.C. Lee, and S. Lee: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2515-25.CrossRefGoogle Scholar
  42. 42.
    A.V. Rodrigues, T.S. Lima, T.A. Vida, C. Brito, A. Garcia, and N. Cheung: Met. Mater. Int., 2018, vol.24, pp. 1058-76.CrossRefGoogle Scholar
  43. 43.
    J.R. Davis: ASM Specialty Handbook-Stainless Steels, ASM International, Materials Park, OH, 1994, pp. 378–80.Google Scholar
  44. 44.
    R. Peraldi, and B.A. Pint: Oxid. Met. 2004, vol. 61, pp. 463-83.CrossRefGoogle Scholar
  45. 45.
    X. Peng, J. Yan, Y. Zhou, and F. Wang: Acta Mater. 2005, vol. 53, pp. 5079-88.CrossRefGoogle Scholar
  46. 46.
    T. Ishitsuka and H. Mimura: JSME Int. J. A, 2002, vol. A45, pp. 110-17.CrossRefGoogle Scholar
  47. 47.
    M. Filipovic, Z. Kamberovic, M. Korac, and B. Jordovic: ISIJ Int., 2013, vol. 53, pp. 2160-66.CrossRefGoogle Scholar
  48. 48.
    S. Kheirandish: ISIJ Int., 2001, vol. 41, pp. 1502-09.CrossRefGoogle Scholar
  49. 49.
    London Metal Exchange: Accessed 10 Sept 2018.
  50. 50.
    M. Ekström, and S. Jonsson: Mater. Sci. Eng. A, vol. 616, pp. 78-87 (2014).CrossRefGoogle Scholar
  51. 51.
    N. Fujita, K. Ohmura, and A. Yamamoto: Mater. Sci. Eng. A, vol. 351, pp. 272-81 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Jisung Yoo
    • 1
  • Won-Mi Choi
    • 1
  • Byeong-Joo Lee
    • 1
  • Gi-Yong Kim
    • 2
  • Hyungjun Kim
    • 2
  • Won-Doo Choi
    • 3
  • Yong-Jun Oh
    • 3
  • Sunghak Lee
    • 1
    Email author
  1. 1.Center for Advanced Aerospace Materials, Pohang University of Science and TechnologyPohangKorea
  2. 2.Research and Development CenterGimcheonKorea
  3. 3.Department of Advanced Materials EngineeringHanbat National UniversityDaejeonKorea

Personalised recommendations