Advertisement

Diffusion Paths of Silicide Coatings on Nb-Si-Based Alloys During Pack Cementation Process

  • Wei Shao
  • Yuwen CuiEmail author
  • Chungen ZhouEmail author
Article
  • 37 Downloads

Abstract

Silicide coatings and B-modified silicide coatings were deposited on Nb-Si-based alloys by means of pack cementation method at 1573 K. The phase sequence of the coating/substrate system was investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron microprobe analysis (EPMA), respectively. The substrate is composed of (Nb, X)5Si3, Cr2Nb, and (Nb, X)ss phases (X is Ti, Cr, Hf, and Al). In addition, the silicide coating exhibits a multilayer microstructure, consisting of three layers, i.e., (Nb, X)Si2 → (Nb, X)Si2 + (Ti, Nb)5Si4 → (Ti, Nb)5Si4, whereas the B-modified silicide coating consists of a sequence of four layers, (Nb, X)B2 + (Nb, X)Si2 → (Nb, X)Si2 → (Nb, X)Si2 + (Ti, Nb)5Si4 → (Ti, Nb)5Si4. The diffusion paths for the two coating/substrate systems were thereafter elucidated by inspecting the Nb-Ti-Si-Cr and Nb-Si-Ti-B/Nb-Si-Ti-Cr multinary isotherms. Of technological interest, the diffusion path in the silicide coating was extended to predict and study the diffusion path in the Ge-modified silicide coating/substrate, which well describes the Nb-Ti-Cr-(Si, Ge) tetrahedral isotherm and phase behavior. This offers an indirect validation for the diffusion path in the silicide coating/substrate system.

Notes

Acknowledgments

This work has been supported by the National Natural Science Foundation of China [Grant No. 51431003] and the Joint Fund of the National Natural Science Foundation of China [Grant No. U1435201]. Ms. Wei Shao would like to acknowledge the financial support by the China Scholarship Council [Grant No. 201706020020].

References

  1. 1.
    B.P. Bewlay, M.R. Jackson, P.R. Subramanian, and J.-C. Zhao: Metall. Trans. A, 2003, vol. 34A, pp. 2013-52.Google Scholar
  2. 2.
    R. Braun, U. Schulz, L. Portebois, S. Mathieu, M. Vilasi, and S. Drawin: Intermetallics, 2018, vol. 93, pp. 169-79.CrossRefGoogle Scholar
  3. 3.
    C. A. Utton, I. Papadimitriou, H. Kinoshita, and P. Tsakiropoulos: J. Alloy. Compd., 2017, vol. 717, pp. 303-16.CrossRefGoogle Scholar
  4. 4.
    J.-C. Zhao, M.R. Jackson, and L.A. Peluso: Mater. Sci. Eng. A, 2004, vol. 372, pp. 21-7.CrossRefGoogle Scholar
  5. 5.
    L. Su, L. Jia, K. Jiang, and H. Zhang: Int. J. Refract. Met. Hard Mater., 2017, vol. 69, pp. 131-7.CrossRefGoogle Scholar
  6. 6.
    Y. Qiao, M. Li, and X. Guo: Surf. Coat. Technol., 2014, vol. 258, pp. 921-30.CrossRefGoogle Scholar
  7. 7.
    Z. Cai, S. Liu, L. Xiao, Z. Fang, L. Wei, and B. Zhang: Surf. Coat. Technol., 2017, vol. 324, pp. 182-9.CrossRefGoogle Scholar
  8. 8.
    S. Zhang, X. Shi, and J. Sha: Prog. Nat. Sci.: Mater. Int., 2015, vol. 25, pp. 486-95.CrossRefGoogle Scholar
  9. 9.
    W. Wang and C. Zhou: Corros. Sci., 2016, vol. 110, pp. 114-22.CrossRefGoogle Scholar
  10. 10.
    J. Pang, W. Wang, and C. Zhou: Corros. Sci., 2016, vol. 105, pp. 1-7.CrossRefGoogle Scholar
  11. 11.
    W. Wang, B. Yuan, and C. Zhou: Corros. Sci., 2014, vol. 80, pp. 164-8.CrossRefGoogle Scholar
  12. 12.
    K. Yoshimi, S. Nakatani, T. Suda, S. Hanada, and H. Habazaki: Intermetallics, 2002, vol. 10, pp. 407-14.CrossRefGoogle Scholar
  13. 13.
    Y. Ge, Y. Wang, J. Chen, Y. Zou, L. Guo, J. Ouyang, D. Jia, and Y. Zhou: J. Alloy. Compd., 2018, vol. 745, pp. 271-81.CrossRefGoogle Scholar
  14. 14.
    W. Gong, L. Zhang, D. Yao, and C. Zhou: Scr. Mater., 2009, vol. 61, pp. 100-3.CrossRefGoogle Scholar
  15. 15.
    T. Geng, C. Li, J. Bao, X. Zhao, Z. Du, and C. Guo: Intermetallics, 2009, vol. 17, pp. 343-57.CrossRefGoogle Scholar
  16. 16.
    N. David, Y. Cartigny, T. Belmonte, J.M. Fiorani, and M. Vilasi: Intermetallics, 2006, vol. 14, pp. 464-73.CrossRefGoogle Scholar
  17. 17.
  18. 18.
    B. V. Cockeram and R. A. Rapp: Metall. Trans. A, 1995, vol. 26A, pp. 777-91.CrossRefGoogle Scholar
  19. 19.
    Y. Liu, W. Shao, C. Wang, and C. Zhou: J. Alloy. Compd., 2018, vol. 735, pp. 2247-55.CrossRefGoogle Scholar
  20. 20.
    Y. Liu, W. Wang, Z. Liu, and C. Zhou: Prog. Nat. Sci.: Mater. Int., 2016, vol. 26, pp. 49-57.CrossRefGoogle Scholar
  21. 21.
    G. Effenberg and S. Ilyenko: Light Metal Systems. Part 4: Selected Systems from Al-Si-Ti to Ni-Si-Ti, Landolt-Börnstein - Group IV Physical Chemistry 11A4.Google Scholar
  22. 22.
    Y. Qiao, X. Guo, and X. Li: Corros. Sci., 2015, vol. 91, pp. 75-85.CrossRefGoogle Scholar
  23. 23.
    L. Wang, L. Jia, R. Cui, L. Zheng, and H. Zhang: Chin. J. Aeronaut., 2012, vol. 25, pp. 292-6.CrossRefGoogle Scholar
  24. 24.
    L. Portebois, S. Mathieu, Y. Bouizi, M. Vilasi, and S. Mathieu: Surf. Coat. Technol., 2014, vol. 253, pp. 292-9.CrossRefGoogle Scholar
  25. 25.
    Y. Qiao, Z. Shen, and X. Guo: Corros. Sci., 2015, vol. 93, pp. 126-37.CrossRefGoogle Scholar
  26. 26.
    W. Shao, W. Wang, and C. Zhou: Corros. Sci., 2016, vol. 111, pp. 786-92.CrossRefGoogle Scholar
  27. 27.
    J. Cheng, S. Yi, and J.S. Park: J. Alloy. Compd., 2015, vol. 644, pp. 975-81.CrossRefGoogle Scholar
  28. 28.
    V.T. Witusiewicz, A.A. Bondar, U. Hecht, S. Rex, and T.Ya. Velikanova: J. Alloy. Compd., 2008, vol. 456, pp. 143-50.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Tech Institute for Advanced Materials & School of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  3. 3.Instituto de Ciencia de Materiales de AragónZaragozaSpain

Personalised recommendations