Evaluation of Microstructure at Interfaces of Welded Joint Between Low Alloy Steel and Stainless Steel

  • K. Ravikiran
  • G. Das
  • Suranjit Kumar
  • P. K. Singh
  • K. Sivaprasad
  • M. GhoshEmail author


In the present investigation, welded joints between low alloy steel and 304LN stainless steel were considered. The joints were fabricated using Inconel 152 and 182 as buttering materials. A thin layer of martensite, Type-I boundary, and Type-II boundary were revealed near the fusion boundary between low alloy steel and the buttering material. The polygonal grain structure and unmixed zone were found near the fusion boundary between the weld metal and austenitic stainless steel. During a uniaxial in situ deformation test in an SEM, it was revealed that crack initiation and propagation were through the buttering material. In this respect, the weld fabricated with the Inconel 152 buttering material exhibited better joint efficiency and a higher strain-hardening exponent than the joint produced with the Inconel 182 buttering material. The improved strength of the former joint was attributed to a fine grain structure, fine-scale distribution of complex carbide phases, and qualitatively high dislocation density within the Inconel 152 buttering material.



The authors are grateful to the director, CSIR-NML, for providing permission to use the infrastructural facilities to carry out the investigation. One of the authors thanks the professors at the National Institute of Technology, Tiruchirappalli, for their valuable suggestions.


  1. 1.
    P.K. Singh, V. Bhasin, K.K. Vaze, A.K. Ghosh, and H.S. Kushwaha: BARC Newsletter, 2008, vol. 299, pp. 2–18.Google Scholar
  2. 2.
    U. State, N. R. Commission, Office of Reactor N. Information Notice 2000-17: Crack in Weld Area of Reactor Coolant System Hot Leg Piping at V.C. Summer 2000Google Scholar
  3. 3.
    C.D. Lundin: Weld J., 1982, pp. 58s–63s.Google Scholar
  4. 4.
    J.N. Dupont, J.C. Lippold, and S.D. Kaiser: Welding Metallurgy and Weldability of Nickel Base Alloys. Wiley, Hoboken, NJ, 2009.CrossRefGoogle Scholar
  5. 5.
    M. Sireesha, S.K. Albert, V. Shankar, and S. Sundaresan: J. Nucl. Mater., 2000, vol. 279, pp. 65–76.CrossRefGoogle Scholar
  6. 6.
    A.M. Shariatpanahi and H. Farhangi: Adv. Mater. Res., 2009, vols. 83–86, pp. 449–56.CrossRefGoogle Scholar
  7. 7.
    H. Xu, S. Fyfitch, P. Scott, M. Foucault, R. Kilian, and M. Winters: Resistance to Primary Water Stress Corrosion Cracking of Alloys 690, 52, and 152 in Pressurized Water Reactors (MRP-111), EPRI, Washington, DC, 2004.Google Scholar
  8. 8.
    M. Ghosh, R. Santosh, S.K. Das, G. Das, B. Mahato, J. Korody, S. Kumar, and P.K. Singh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3555–68.CrossRefGoogle Scholar
  9. 9.
    C. Jang, J. Lee, J.K. Sung, and T.J. Eun: Int. J. Press. Vessel Pip., 2008, vol. 85, pp. 635–46.CrossRefGoogle Scholar
  10. 10.
    K.J. Choi, J.J. Kim, B.H. Lee, C.B. Bahn, and J.H. Kim: J. Nucl. Mater., 2013, vol. 441, pp. 493–502.CrossRefGoogle Scholar
  11. 11.
    G.J. Brentrup and J.N. DuPont: Weld J., 2013, vol. 92, pp. 72–79.Google Scholar
  12. 12.
    H. Ming, Z. Zhang, J. Wang, E.H. Han, and W. Ke: Mater. Charact., 2014 vol. 97, pp. 101–15.CrossRefGoogle Scholar
  13. 13.
    Q. Peng, H. Xue, J. Hou, K. Sakaguchi, Y. Takeda, J. Kuniya, and T. Shoji: Corros. Sci., 2011, vol. 53, pp. 4309–17.CrossRefGoogle Scholar
  14. 14.
    R. Nivas, P.K. Singh, G. Das, S.K. Das, S. Kumar, B. Mahato, K. Shivaprasad, and M. Ghosh: J. Manuf. Processes, 2017, vol. 25, pp. 274–83.CrossRefGoogle Scholar
  15. 15.
    H. Ming, Z. Zhang, J. Wang, E.H. Han, P. Wang, and Z. Sun: Mater. Charact., 2017, vol. 123, pp. 233–43.CrossRefGoogle Scholar
  16. 16.
    Z. Sun: Int. J. Press. Vess. Pip., 1996, vol. 68, pp. 153–60.CrossRefGoogle Scholar
  17. 17.
    J. Ruge, C. Oestmann, I. Decker, and K. Iversen: Proc. Electron Laser Beam Weld, 1986, pp. 193–203.Google Scholar
  18. 18.
    K. Murti and S. Sundaresan: Weld J., 1985, vol. 64, pp. 327–34.Google Scholar
  19. 19.
    R. Mouginot and H. Hanninen: Microstructure of Ni-Base Alloy Dissimilar Metal Welds, Aalto University, Espoo, Finland, 2013.Google Scholar
  20. 20.
    G.E. Dieter: Mechanical Metallurgy, 4th ed., McGraw-Hill, New York, NY, 1976.Google Scholar
  21. 21.
    D.W. Rathod, S. Pandey, P.K. Singh, and S. Kumar: J. Nucl. Mater., 2017, vol. 493, pp. 412–25.CrossRefGoogle Scholar
  22. 22.
    R. Nivas, G. Das, S.K. Das, B. Hato, S. Kumar, K. Sivaprasad, and M. Ghosh: Metall. Mater. Trans. A, 2017, vol. 48A, p. 23045.Google Scholar
  23. 23.
    S.L. Jeng, H.T. Lee, T.Y. Kuo, K.C. Tsai, C.L. Chung, and J.Y. Huang: Mater. Des., 2015, vol. 87, pp. 920–31.CrossRefGoogle Scholar
  24. 24.
    C. Lu, Y. He, Z. Gao, J. Yang, W. Jin, and Z. Xie: J. Nucl. Mater., 2017, vol. 495, pp. 103–10.CrossRefGoogle Scholar
  25. 25.
    S. Wang, J. Ding, H. Ming, Z. Zhang, and J. Wang: Mater. Charact., 2015, vol. 100, pp. 50–60.CrossRefGoogle Scholar
  26. 26.
    D. Porter and K. Easterling: Phase Transformations in Metals and Alloys, Chapman and Hall, London, 1992, p. 439.CrossRefGoogle Scholar
  27. 27.
    K. Suzuki, I. Kurihara, T. Sasaki, Y. Koyoma, and Y. Tanaka: Nucl. Eng. Des., 2001, vol. 206, pp. 261–77.CrossRefGoogle Scholar
  28. 28.
    J.N. Dupont and C.S. Kusko: Weld J.-NY, 2007, vol. 86, p. 51Google Scholar
  29. 29.
    T.G. Gooch: TWI Res. Bull., 1977, pp. 343–49Google Scholar
  30. 30.
    J. Gegner, A.A. Vasilyev, P. Wilbrandt, and M. Kaffenberger: Proc. Int. Conf. Materials Technology Model, 2012, pp. 261–87Google Scholar
  31. 31.
    Y.J. Wu: Hydrogen Related Disbanding of Weld Overlay of Corrosion Resistant Alloys, University of Alberta, Edmonton, AB Canada, 1993Google Scholar
  32. 32.
    T.W. Nelson, J.C. Lippold, and M.J. Mills: Sci. Technol. Weld. Join., 1998, vol. 3, pp. 249–55CrossRefGoogle Scholar
  33. 33.
    H. Shah Hosseini, M. Shamanian, and A. Kermanpur: Mater. Charact., 2011, vol. 62, pp. 425–31CrossRefGoogle Scholar
  34. 34.
    J.N. DuPont, A.R. Marder, M.R. Notis, and C.V. Robino: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2797–2806CrossRefGoogle Scholar
  35. 35.
    H. Naffakh, M. Shamanian, and F. Ashrafizadeh: J. Mater. Process. Technol., 2009, vol. 209, pp. 3628–39CrossRefGoogle Scholar
  36. 36.
    N. Suutala: Metall. Trans. A, 1983, vol. 14A, pp. 191–97CrossRefGoogle Scholar
  37. 37.
    J.W. Elmer, S.M. Allen, and T.W. Eagar: Metall. Trans. A, 1989, vol. 20A, pp. 2117–31CrossRefGoogle Scholar
  38. 38.
    S. Kou: Weld. Metall., 2002Google Scholar
  39. 39.
    R.W. Messler: Principles of Welding: Processes, Physics, Chemistry, and Metallurgy, Wiley, Weinheim, 1999.CrossRefGoogle Scholar
  40. 40.
    W. Baeslack, J.C. Lippold, and W.F. Savage: Weld. J., 1979, vol. 58, p. 168.Google Scholar
  41. 41.
    H. Ming, R. Zhu, Z. Zhang, J. Wang, E.H. Han, W. Ke, and M. Su: Mater. Sci. Eng. A, 2016, vol. 669, pp. 279–90.CrossRefGoogle Scholar
  42. 42.
    A. Joseph, S.K. Rai, T. Jayakumar, and N. Murugan: Int. J. Press. Vess. Pip., 2005, vol. 82, pp. 700–05CrossRefGoogle Scholar
  43. 43.
    D.A. Hughes and N. Hansen: in Fractography, eds., R.D. Joseph, D.D. James, A.D. Deborah, J.F. Heather, M.C. George, and M.J. Diane, ASM International, Metals Park, OH, 1987, pp. 192–206Google Scholar
  44. 44.
    S. Kumar, P.K. Singh, K.N. Karn, and V. Bhasin: Fatig. Fract. Eng. Mater. Struct., 2017, vol. 40, pp. 190–206CrossRefGoogle Scholar
  45. 45.
    H.T. Lee and T.Y. Kuo: Sci. Technol. Weld. Join., 1999, vol. 4, pp. 94–103CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • K. Ravikiran
    • 1
  • G. Das
    • 2
  • Suranjit Kumar
    • 3
  • P. K. Singh
    • 3
  • K. Sivaprasad
    • 4
  • M. Ghosh
    • 2
    Email author
  1. 1.Advanced Materials Processing Laboratory, Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Material Engineering DivisionCSIR-National Metallurgical LaboratoryJamshedpurIndia
  3. 3.Reactor Safety DivisionBhaba Atomic Research CentreMumbaiIndia
  4. 4.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations