Growth Kinetics of Microarc Oxidation TiO2 Ceramic Film on Ti6Al4V Alloy in Tetraborate Electrolyte

  • Dajun Zhai
  • Keqin FengEmail author
  • Huifang Yue


The growth kinetics of microarc oxidation TiO2 ceramic film on Ti6Al4V alloy in 0.1 M Na2B4O7·10H2O electrolyte were studied using scanning electron microscopy, transmission electron microscope, atomic force microscope, X-ray diffraction, and potentiodynamic polarization. It was found that the discharge sizes increased gradually from anodic oxidation, spark discharge, and microarc to arc discharges in the microarc oxidation process, and reached the maximum value without anymore increases. The microarc oxidation coating was mainly composed of nanocrystalline rutile TiO2 grains with very little amorphous titanium dioxide, and was made up of three layers, namely an inner dense thin layer, a middle dense thick layer, and a porous outer layer. The content of the rutile phase increased with the increasing discharge size, and when the discharge size reached a maximum, the increase rate decreased slightly. The surface roughness, Rv, and corrosion resistance of the coating increased with the increasing discharge size until the discharge size reached a maximum. It was concluded that the thickness of two dense layers depended on the discharge size, with any changes in it revealing the growth kinetics of the coating. A new method was developed to obtain the effective thickness of the coatings by measuring the thickness of the two dense layers. The results demonstrated that the growth kinetics of the two dense layers are linear during spark and microarc discharges, of which the growth trend is the same as that of the voltage. A linear relationship for the voltage and thickness of the two dense layers was obtained.



  1. 1.
    X. Liu, P. K. Chu, C. Ding: Mater. Sci. Eng. R, vol. 47(3–4), pp. 49-121 (2004).CrossRefGoogle Scholar
  2. 2.
    M. Popa, J. M. C. Moreno, C. Vasilescu, S. I. Drob, E. I. Neacsu, A. Coer, J. Hmeljak, G. Zerjav, and I. Milosev: Metall. Mater. Trans. A, 2014, vol. 45(7), pp. 3130-3143.CrossRefGoogle Scholar
  3. 3.
    Y. Wang, H. Yu, C. Chen, Z. Zhao: Mater. Design, 2015, vol. 85, pp. 640-652.CrossRefGoogle Scholar
  4. 4.
    R. Osman, M. Swain: Materials, 2015, vol. 8(3), pp. 932-958.CrossRefGoogle Scholar
  5. 5.
    N. Hallab: J. Clin. Rheumatol., 2001, vol. 7(4), pp. 215-8.CrossRefGoogle Scholar
  6. 6.
    S. Stojadinovic, R. Vasilic, J. Radic-Peric, M. Peric: Surf. Coating Technol., 2015, vol. 273, pp.1-11.CrossRefGoogle Scholar
  7. 7.
    T. Mi, B. Jiang, Liu Z, L. Fan: Electrochim Acta, 2014, vol.123, pp.369-377.CrossRefGoogle Scholar
  8. 8.
    R. F. Zhang, S. F. Zhang, Y. L. Shen, L.H. Zhang, T.Z. Liu, Y.Q. Zhang, S.B. Guo: Appl. Surf. Sci., 2012, vol. 258(17), pp.6602-6610.CrossRefGoogle Scholar
  9. 9.
    T. S. N. S. Narayanan, M. H. Lee: J. Alloy Compd., 2016, vol. 687, pp.720-732.CrossRefGoogle Scholar
  10. 10.
    D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, CH. Subrahmanyam, L. R. Krishna, K. P. Rao: Surf. Coat. Technol., 2013, vol. 222(6), pp. 31-37.CrossRefGoogle Scholar
  11. 11.
    H.X. Li, V.S. Rudnev, X.H. Zheng, T.P. Yarovaya, R.G. Song: J. Alloys Compd., vol. 462(1), pp. 99-102 (2008)CrossRefGoogle Scholar
  12. 12.
    M. S. Joni, A. Fattah-Alhosseini: J. Alloy Compd., 2016, vol. 661, pp. 237-244.CrossRefGoogle Scholar
  13. 13.
    S. Yagi, K. Kuwabara, Y. Fukuta, K. Kubota, E. Matsubara: Corros. Sci., 2013, vol. 73(13), pp. 188-195.CrossRefGoogle Scholar
  14. 14.
    M. S. Vasil’Eva, V. S. Rudnev, L. M. Tyrina, I. Lukiyanchuk, N. B. Kondrikov, Pavel S Gordienko: Russ. J. Appl. Chem., 2002, vol. 75(4), pp. 569-572.Google Scholar
  15. 15.
    V. S. Rudnev, M. S. Vasilyeva, N. B. Kondrikov, L.M. Tyrina: Appl. Surf. Sci., 2005, vol. 252(5), pp. 1211-1220.CrossRefGoogle Scholar
  16. 16.
    V. S. Rudnev, T. P. Yarovaya, V. S. Egorkin, S. Sinebryukhov, S. V. Gnedenkov: Russ. J. Appl. Chem., 2010, vol. 83(4), pp. 664-670.CrossRefGoogle Scholar
  17. 17.
    F.C. Walsh, C.T.J. Low, R.J.K. Wood, K.T. Stevens, J. Archer, A.R. Poeton, A. Ryder: Trans. Inst. Met. Finish, 2009, vol. 87(3), pp. 122-135.CrossRefGoogle Scholar
  18. 18.
    J.M. Albella, I. Montero, J.M. Martinez-Duart: J. Electrochem Soc., vol. 131(5), pp. 1101-1104 (1984).CrossRefGoogle Scholar
  19. 19.
    X. P. Zhang, S. M. Xiong, Q. Xu, B. Liu: Mater. Prot., 2004, vol. 37(8), pp. 19-20.Google Scholar
  20. 20.
    G. Sundararajan, L. R. Krishna: Surf. Coat. Technol., 2003, vol. 167(2), pp. 269-277.CrossRefGoogle Scholar
  21. 21.
    E. Erfanifar, M. Aliofkhazraei, H. F. Nabavi, H. Sharifi, A. S. R. Aghdam: Mater. Chem. Phys., 2017, vol. 185, pp. 162-175.CrossRefGoogle Scholar
  22. 22.
    G. B. Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade: Journal of Magnesium and Alloys, 2017, vol. 5(1), pp. 74-132.CrossRefGoogle Scholar
  23. 23.
    L. Chang: J. Alloys Compd., vol. 468(1-2), pp. 462-465 (2009).CrossRefGoogle Scholar
  24. 24.
    T. H. Teh, A. Berkani, S. Mato, P. Skeldon, G. E. Thompson, H. Habazaki, K. Shimizu: Corros. Sci., 2003, vol. 45(12), pp. 2757-2768.CrossRefGoogle Scholar
  25. 25.
    X. Jiang, C. Pan: Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Elsevier, Amsterdam, 2015, pp. 257-276.CrossRefGoogle Scholar
  26. 26.
    J. Zhao, X. Wang, R. Chen, L. Li: Solid State Commun., 2005, vol. 134(10), pp. 705-710.CrossRefGoogle Scholar
  27. 27.
    M. Sowa, J. Worek, G. Dercz, D. Korotin, A. I. Kukharenko, E. Kurmaev, S. O. Cholakh, M. Basiaga, W. Simka: Electrochimica Acta, 2016, vol. 198, pp. 91-103.CrossRefGoogle Scholar
  28. 28.
    Y. Cheng, J. Cao, M. Mao, H. Xie, P. Skeldon: Surf. Coating Technol., 2016, vol. 291, pp. 239-249.CrossRefGoogle Scholar
  29. 29.
    Y. Leng: Materials Characterization: Introduction to Microscopic and Spectroscopic Methods. Wiley, New York, 2010.Google Scholar
  30. 30.
    M. Stern, A.L. Geary (1957) J. Electrochem. Soc., 104(1), 56CrossRefGoogle Scholar
  31. 31.
    G. C. Wood, C. Pearson: Corros. Sci., 1967, vol. 7(2), pp. 119-125.CrossRefGoogle Scholar
  32. 32.
    A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey: Surf. Coat. Technol., 1999, 122(2-3), 73-93.CrossRefGoogle Scholar
  33. 33.
    X. Jiang, A. Shi, Y. Wang, Y. Li, C. Pan: Nanoscale, 2011, vol. 3(9), pp. 3573-3577.CrossRefGoogle Scholar
  34. 34.
    A. Fattah-Alhosseini, M. K. Keshavarz, M. Molaei, and S. O. Gashti: Metall. Mater. Trans. A, 2018, vol. 49(10), pp. 4966-4979.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Manufacturing Science and EngineeringSichuan UniversityChengduP.R. China
  2. 2.Material Engineering DepartmentSichuan Engineering Technical CollegeDeyangP.R. China
  3. 3.Nuclear Power Institute of ChinaScience and Technology on Reactor System Design Technology LaboratoryChengduP.R. China

Personalised recommendations