Advertisement

On the Strain-Hardening Behavior and Twin-Induced Grain Refinement of CP-Ti Under Ambient Temperature Compression

  • Devesh Kumar Chouhan
  • Alok Kumar Singh
  • Somjeet BiswasEmail author
  • Chandan Mondal
Article
  • 47 Downloads

Abstract

In this paper, a systematic investigation on the twin-induced grain fragmentation of commercially pure Titanium was carried out under quasi-static uniaxial compression test at ambient temperature. The compression tests were interrupted at various strain levels in order to examine the progressive evolution of the microstructure and texture. The detailed microstructural analysis was performed using the electron backscattered diffraction technique. The microstructural features indicated the presence of \( \{ 10\bar{1}2\} \) extension twins (ET), \( \{ 11\bar{2}2\} \) contraction twins (CT) and their interactions. The strain-hardening behavior of the material corroborates with the microstructural evidences. The strain-hardening rate and its derivative clearly distinguish the regions of slip- and twin-dominating zones with the increasing strain. The deformation texture substantiates that along with the twins, dislocation slips were active. The slip-based deformation finally deviates the twin boundaries from its special character at medium-to-high strains. At low strains, ET originate in texturally soft grains. These twin domains are comparatively texturally harder. They interact to form ET–ET with ~ 56.8 deg about \( \langle 10\bar{1}0 \rangle \), with twin lamellar structure and consumes the entire parent grain with further deformation by twin expansion. CT develop on texturally hard grains with subsequent strains and were texturally softer. CT–CT, ET–CT-type twin interactions, and CT–ET double twins with ~ 77, ~ 87, and ~ 44.5 deg about \(\langle 10\bar{1}0 \rangle \), \(\langle 4\bar{2}\bar{2}1 \rangle \) and \(\langle 5\bar{1}\bar{4}0 \rangle \) axes, respectively, were observed. The microstructural changes corresponding to twin-boundary migration, interaction, and grain refinement are discussed on the basis of grain orientation spread and grain reference orientation deviation.

Notes

Acknowledgments

The authors would like to acknowledge the financial grants provided by the ISIRD, SRIC, IIT Kharagpur, India and Science; and the Engineering Research Board (Ref. No. ECR/2016/000125), Department of Science and Technology, Government of India to carry out the experiments. The authors sincerely acknowledge the prolific and helpful discussions they had with Professor Laszlo Toth and Professor R.K. Ray.

References

  1. 1.
    G. Lutjering and J. C. Williams, Titanium, Berlin, Heidelberg: Springer. 2007Google Scholar
  2. 2.
    A. Pochettino, N. Gannio, C. V. Edwards, and R. Penelle: Scripta Mater., 1992, vol. 27, pp. 1859-1863.CrossRefGoogle Scholar
  3. 3.
    S. Balasubramanian, L. Anand: Acta Mater., 2002, vol. 50, pp.133–148.CrossRefGoogle Scholar
  4. 4.
    G.E. Dieter, J. Franklin Inst. 273, 1962, pp. 338.Google Scholar
  5. 5.
    H. Qin, J. J. Jonas, H. Yu, N. Brodusch, R. Gauvin and X. Zhang: Acta Mater., 2014, vol. 71, pp. 293–305.CrossRefGoogle Scholar
  6. 6.
    J. Beyerlein, C. N. Tome: Proc. R. Soc. Lond. A, 2010, Vol. 466, pp. 2517-2544.CrossRefGoogle Scholar
  7. 7.
    C. E. S. Wang, C. Schuman, L. Bao, J.S. Lecomte, Y. Zhang, J. M. Raulot, M. J. Philippe and X. Zhao: Adv. Eng. Mater., 2012, vol. 14, pp. 304–311.CrossRefGoogle Scholar
  8. 8.
    E. Martin, L. Capolungo, L. Jiang and J. J. Jonas: Acta Mater., 2010, vol. 58, pp. 3970–3983.CrossRefGoogle Scholar
  9. 9.
    X. Wu, S. R. Kalidindi, C. Necker and A. A. Salem: Acta Mater.,2007, vol. 55, pp. 423–432.CrossRefGoogle Scholar
  10. 10.
    S. Sinha, A. Ghosh and N. P. Gurao: Philos. Mag., 2016, vol. 96, pp. 1485–1508.CrossRefGoogle Scholar
  11. 11.
    Kim, Y., J. Kim, D. H. Shin, K.T. Park: Met. Mater. Trans. A., 2003, vol. 34, pp. 1555–1558CrossRefGoogle Scholar
  12. 12.
    A. Salem, S. R. Kalidindi and R. D. Doherty: Acta Mater., 2003, vol. 51, pp. 4225–4237.CrossRefGoogle Scholar
  13. 13.
    Z. S. Basinski, M. S. Szczerba, M. Niewczas, J. D. Embury and S. J. Basinski: Rev. Metallurgie., 1997, vol. 94, pp. 1037–1044.CrossRefGoogle Scholar
  14. 14.
    A. Salem, S. R. Kalidindi and S. L. Semiatin: Acta Mater., 2005, vol. 53, pp. 3495–3502.CrossRefGoogle Scholar
  15. 15.
    F. Xu, X. Zhang, H. Ni, Y. Cheng, Y. Zhu and Q. Liu: Mater. Sci. Eng. A., 2013, vol. 564, pp.22–33.CrossRefGoogle Scholar
  16. 16.
    T. Birk, S. Biswas, J. Frenzel, and G. Eggeler, G. Shap: Superelasticity, 2016, Vol. 2(2), pp. 145-159.CrossRefGoogle Scholar
  17. 17.
    S. Biswas, S. Singh Dhinwal and S. Suwas: Acta Mater., 2010, vol. 58, pp. 3247–61CrossRefGoogle Scholar
  18. 18.
    J. L. Milner, F. A. Farha, C. Bunget and T. Kurfess: 142nd Annu. Meet. Exhib., 2013, TMS, pp. 33–40.Google Scholar
  19. 19.
    S. Biswas, D. I. Kim and S. Suwas: Mater. Sci. Eng. A., 2012, vol. 550, pp. 19-30.CrossRefGoogle Scholar
  20. 20.
    Kim, I., J. Kim, D. H. Shin, C. S. Lee, and S. K. Hwang: Mater. Sci. Eng. A., 2013, vol. 342, pp. 302–310.CrossRefGoogle Scholar
  21. 21.
    S. Biswas, D. S. Singh, B. Beausir, L. S. Toth and S. Suwas: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2598-2613.CrossRefGoogle Scholar
  22. 22.
    S. Biswas, H. G. Brokmeier, J. J. Fundenberger and S. Suwas: Mater. Charact., 2015, vol. 102, pp. 98-102.CrossRefGoogle Scholar
  23. 23.
    S. Biswas, S. Suwas: Scr. Mater., 2012, vol. 66, pp. 89-92.CrossRefGoogle Scholar
  24. 24.
    S.S. Satheesh Kumar, K. Priyasudha, M. S. Rao and T. Raghu: Mater. Des., 2016, vol. 101, pp. 117–129.CrossRefGoogle Scholar
  25. 25.
    M. Shirooyeh, J. Xu and T. G. Langdon: Mater. Sci. Eng. A., 2014, vol. 614, pp. 223–231.CrossRefGoogle Scholar
  26. 26.
    K. Y. Zhu, A. Vassel, F. Brisset, K. Lu and J. Lu: Acta Mater., 2004, vol. 52, pp. 4101–4110.CrossRefGoogle Scholar
  27. 27.
    J. W. Won, D. Kim, S. G. Hong and C. S. Lee: J. Alloys Compd., 2016, vol. 683, pp. 92–99.CrossRefGoogle Scholar
  28. 28.
    S. Xu, L. S. Toth, C. Schuman, J. S. Lecomte and M. R. Barnett: Acta Mater., 2017, vol. 124, pp. 59–70.CrossRefGoogle Scholar
  29. 29.
    X. Sun, Y. Guo, Q. Wei, Y. Li and S. Zhang: Mater. Sci. Eng. A., 2016, vol. 669, pp. 226–245.CrossRefGoogle Scholar
  30. 30.
    S. Sinha, N. P. Gurao: Mater. Des., 2016, vol. 116, pp. 686–693.CrossRefGoogle Scholar
  31. 31.
    S. Xu, M. Gong, X. Xie, Y. Liu, C. Schuman, J. S. Lecomte and J. Wang: Philos. Mag. Lett., 2017, vol. 97, pp. 429-441.CrossRefGoogle Scholar
  32. 32.
    H. W. Zhang, Z. K. Hei, G. Liu, J. Lu and K. Lu: Acta Mater., 2003, vol. 51, pp. 1871–1881.CrossRefGoogle Scholar
  33. 33.
    N. R. Tao, K. Lu: Scripta Mater., 2009, vol. 60, pp. 1039–1043.CrossRefGoogle Scholar
  34. 34.
    W. L. Li, N. R. Tao and K. Lu: Scripta Mater., 2008, vol. 59, pp. 546–549.CrossRefGoogle Scholar
  35. 35.
    Serra, D. J. Bacon: Philos. Mag. A, 1996, vol. 73, pp.333–343.CrossRefGoogle Scholar
  36. 36.
    Q. Yu, J. Wang, Y. Jiang, R. J. McCabe, N. Li, C. N. Tome: Acta Mater., 2014, vol. 77, pp. 28-42.CrossRefGoogle Scholar
  37. 37.
    S. Xu, M. Gong, C. Schuman, J. S. Lecomte, X. Xie, and J. Wang: Acta Mater., 2017, vol. 132, pp. 57-68.CrossRefGoogle Scholar
  38. 38.
    S. Xu, M. Gong, Y. Jiang, C. Schuman, J. S. Lecomte, and J. Wang: Acta Mater.,2018, vol. 152, pp. 58-76.CrossRefGoogle Scholar
  39. 39.
    M. Gong, S. Xu, Y. Jiang, Y. Liu, and J. Wang; Acta Mater., 2018, vol. 159, pp. 65-76.CrossRefGoogle Scholar
  40. 40.
    P. Zhou, S. Xu, D. Xiao, C. Jiang, Y. Hu, and J. Wang: Int. J. Plast., 2019, vol. 112, pp. 194-205.CrossRefGoogle Scholar
  41. 41.
    S. Xu, P. Zhou, G. Liu, D. Xiao, M. Gong, and J. Wang: Acta Mater., 2019, vol. 165, pp. 547-560.CrossRefGoogle Scholar
  42. 42.
    M. Gong, S. Xu, D. Xie, S. Wang, J. Wang, C. Schuman, and J. S. Lecomte: Acta Mater., 2019, vol. 164, pp. 776-787.CrossRefGoogle Scholar
  43. 43.
    B. Beausir and J.-J. Fundenberger, JTex software, 2015. http://jtex-software.eu/.
  44. 44.
    H. Qin, J. J. Jonas: Acta Mater., 2014, vol. 75, pp. 198–211.CrossRefGoogle Scholar
  45. 45.
    D. G. Brandon: Acta Mater., 1966, vol. 31, pp. 1479–1484.CrossRefGoogle Scholar
  46. 46.
    G. Palumbo, K. T. Aust: Acta Metall. Mater., 1990, vol. 38, pp.2343–2352.CrossRefGoogle Scholar
  47. 47.
    L. Bao: Doctoral dissertation, Metz, 2011.Google Scholar
  48. 48.
    F. D. Rosi, F. C. Perkins and L. L. Seigle: JOM, 1956, vol. 8, pp. 115–122.CrossRefGoogle Scholar
  49. 49.
    J. Christian, S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp.1–157.CrossRefGoogle Scholar
  50. 50.
    M. A. Kumar, A. K. Kanjarla, S. R. Niezgoda, R. A. Lebensohn and C. N. Tome: Acta Mater., 2015, vol. 84 pp. 349–358.CrossRefGoogle Scholar
  51. 51.
    P. G. Partridge: Metall. Rev., 1967, vol. 12, pp. 169–194.Google Scholar
  52. 52.
    D.K. Chouhan, S. Mondal, A.K. Singh, S.K. Sahoo, S. Biswas, Deciphering the role of slip/twinning on microstructure and texture evolution in CP-Ti Grade 2 using crystal plasticity modeling (Communicated)Google Scholar
  53. 53.
    M. Morita and O. Umezawa: Mater. Trans., 2011, vol. 52, pp. 1595-1602.CrossRefGoogle Scholar
  54. 54.
    S. R. Kalidindi, A. A. Salem, and R. D. Doherty: Adv. Eng. Mater., 2003, vol. 5, pp. 229-232.CrossRefGoogle Scholar
  55. 55.
    M. H. Yoo: Metall. Trans. A, 1981, vol. 12, pp. 409-418.CrossRefGoogle Scholar
  56. 56.
    G. W. Groves and A. Kelly: Philos. Mag. A,1963, vol. 8, pp. 877-887.CrossRefGoogle Scholar
  57. 57.
    S. I. Wright, M. M. Nowell and D. P. Field: Microscopy and microanalysis, 2011, vol. 17, pp. 316-329.CrossRefGoogle Scholar
  58. 58.
    C. Zhu, T. Harrington, G. T. Gray and K. S. Vecchio: Acta Mater., 2018, vol. 155, pp. 104-116.CrossRefGoogle Scholar
  59. 59.
    A. Serra and D. J. Bacon: Philos. Mag. A, 1996, vol. 73, pp. 333-343.CrossRefGoogle Scholar
  60. 60.
    M. Winning, G. Gottstein and L. S. Shvindlerman: Acta Mater., 2002, vol. 50, pp. 353-363.CrossRefGoogle Scholar
  61. 61.
    L. S Toth, C. F. Gu, B. Beausir, J. J. Fundenberger and M. Hoffman, Acta Mater., 2016, vol. 117, pp. 35-42.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Devesh Kumar Chouhan
    • 1
  • Alok Kumar Singh
    • 1
  • Somjeet Biswas
    • 1
    Email author
  • Chandan Mondal
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Structure & Failure Analysis Group (SFAG)Defence Metallurgical Research Laboratory (DMRL)KanchanbaghIndia

Personalised recommendations