On the Influence of Grain Boundary Misorientation on the Severe Plastic Deformation of Aluminum Bicrystals: A Three-Dimensional Crystal Plasticity Finite Element Method Study

  • M. LiuEmail author
  • S. Nambu
  • K. Zhou
  • P. F. Wang
  • G. Lu
  • C. Lu
  • K. A. Tieu
  • T. Koseki


A three-dimensional crystal plasticity finite element method model is developed to investigate the influence of the grain boundary (GB) misorientation on the equal-channel angular pressing deformation of aluminum bicrystals. Aluminum bicrystals with symmetric 〈112〉 tilt boundaries and misorientations of 9 deg (low angle), 15 deg (transitional), and 30 deg (high angle) have been designed to study the influence of GB misorientations on the deformed areas near GBs. The numerical results indicate that a high-angle grain boundary acts as a barrier in terms of Mises stress distribution, plastic slip, and lattice rotation, while the aluminum bicrystal with low-angle grain boundary still behaves similarly to a single crystal. An intermediate configuration is found for the aluminum bicrystal with transitional grain boundary. It is also found that the geometry of the GB after deformation depends on the initial orientation of the grain at the lower part of the billet.



The authors acknowledge the valuable suggestions from Professor Ronald W. Armstrong, University of Maryland, the financial support from the Japan Society for the Promotion of Science (JSPS), and the high-performance computing (HPC) infrastructure from Nanyang Technological University, Singapore.


  1. 1.
    S.J. Vachhani, R.D. Doherty, and S.R. Kalidindi: Int. J. Plasticity, 2016, vol. 81, pp. 87–101.CrossRefGoogle Scholar
  2. 2.
    M. Koster, K.C. Le, and B.D. Nguyen: Int. J. Plasticity, 2015, vol. 69, pp. 134–51.CrossRefGoogle Scholar
  3. 3.
    D. Gonzalez, I. Simonovski, P.J. Withers, and J.Q. da Fonseca: Int. J. Plasticity, 2014, vol. 61, pp. 49–63.CrossRefGoogle Scholar
  4. 4.
    I. Benedetti, V. Gulizzi, and V. Mallardo: Int. J. Plasticity, 2016, vol. 83, pp. 202–24.CrossRefGoogle Scholar
  5. 5.
    M. Liu, C. Lu, K.A. Tieu, and K. Zhou: J. Mater. Res., 2015, vol. 30, pp. 2485–99.CrossRefGoogle Scholar
  6. 6.
    D.M. Kochmann and K.C. Le: Int. J. Plasticity, 2008, vol. 24, pp. 2125–47.CrossRefGoogle Scholar
  7. 7.
    E.O. Hall: Proc. Phys. Soc. London B, 1951, vol. 64, pp. 747–53.CrossRefGoogle Scholar
  8. 8.
    R.W. Armstrong: Acta Mech., 2014, vol. 225, pp. 1013–28.CrossRefGoogle Scholar
  9. 9.
    M.S. Huang, Z.H. Li, and J. Tong: Int. J. Plasticity, 2014, vol. 61, pp. 112–27.CrossRefGoogle Scholar
  10. 10.
    H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, and R.H. Wagoner: Int. J. Plasticity, 2011, vol. 27, pp. 1328–54.CrossRefGoogle Scholar
  11. 11.
    D.E. Spearot, K.I. Jacob, and D.L. McDowell: Int. J. Plasticity, 2007, vol. 23, pp. 143–60.CrossRefGoogle Scholar
  12. 12.
    S. Zaefferer, J.C. Kuo, Z. Zhao, M. Winning, and D. Raabe: Acta Mater., 2003, vol. 51, pp. 4719–35.CrossRefGoogle Scholar
  13. 13.
    C. Rey and A. Zaoui: Acta Metall. Mater., 1982, vol. 30, pp. 523–35.CrossRefGoogle Scholar
  14. 14.
    J.D. Mote and J.E. Dorn: Trans. Am. Inst. Min. Met. Eng., 1960, vol. 218, pp. 491–97.Google Scholar
  15. 15.
    M.I. Latypov, M.G. Lee, Y. Beygelzimer, D. Prilepo, Y. Gusar, and H.S. Kim: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1248–60.CrossRefGoogle Scholar
  16. 16.
    W.Z. Han, H.J. Yang, X.H. An, R.Q. Yang, S.X. Li, S.D. Wu, and Z.F. Zhang: Acta Mater., 2009, vol. 57, pp. 1132–46.CrossRefGoogle Scholar
  17. 17.
    Y. Wadamori, K. Hirayama, H. Fujiwara, T. Uenoya, and H. Miyamoto: J. Jpn. Inst. Met., 2013, vol. 77, pp. 348–52.CrossRefGoogle Scholar
  18. 18.
    K. Hirayama, K. Nagai, H. Fujiwara, and H. Miyamoto: Mater. Trans., 2013, vol. 54, pp. 1077–82.CrossRefGoogle Scholar
  19. 19.
    L.S. Toth: Scripta Mater., 2008, vol. 59, pp. 381–84.CrossRefGoogle Scholar
  20. 20.
    I.J. Beyerlein and L.S. Toth: Progr. Mater. Sci., 2009, vol. 54, pp. 427–510.CrossRefGoogle Scholar
  21. 21.
    W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Acta Mater., 2007, vol. 55, pp. 5889–5900.CrossRefGoogle Scholar
  22. 22.
    S.R. Kalidindi, B.R. Donohue, and S.Y. Li: Int. J. Plasticity, 2009, vol. 25, pp. 768–79.CrossRefGoogle Scholar
  23. 23.
    S. Li, B.R. Donohue, and S.R. Kalidindi: Mater. Sci. Eng. A–Struct., 2008, vol. 480, pp. 17–23.CrossRefGoogle Scholar
  24. 24.
    S.Y. Li, S.R. Kalidindi, and I.J. Beyerlein: Mater. Sci. Eng. AStruct., 2005, vol. 410, pp. 207–12.CrossRefGoogle Scholar
  25. 25.
    P.D. Wu, Y. Huang, and D.J. Lloyd: Scripta Mater., 2006, vol. 54, pp. 2107–12.CrossRefGoogle Scholar
  26. 26.
    R.J. Asaro: J. Appl. Mech.-Trans. ASME, 1983, 50: 921–34.CrossRefGoogle Scholar
  27. 27.
    R.J. Asaro and J.R. Rice: J. Mech. Phys. Solids, 1977, vol. 25, pp. 309–38.CrossRefGoogle Scholar
  28. 28.
    D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall. Mater., 1982, vol. 30, pp. 1087–1119.CrossRefGoogle Scholar
  29. 29.
    R.J. Asaro: Adv. Appl. Mech., 1983, vol. 23, pp. 1–115.CrossRefGoogle Scholar
  30. 30.
    R.J. Asaro and A. Needleman: Acta Metall. Mater., 1985, vol. 33, pp. 923–53.CrossRefGoogle Scholar
  31. 31.
    M. Liu, K.A. Tieu, K. Zhou, and C.T. Peng: Philos. Mag., 2016, vol. 96, pp. 261–73.CrossRefGoogle Scholar
  32. 32.
    Y.G. Huang: Harvard University, Cambridge, MA, 1991.Google Scholar
  33. 33.
    J.L. Bassani and T.Y. Wu: Proc. R. Soc. London Mater., 1991, vol. 435, pp. 21–41.CrossRefGoogle Scholar
  34. 34.
    M. Liu, K.A. Tieu, K. Zhou, and C.T. Peng: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2717–25.CrossRefGoogle Scholar
  35. 35.
    R. Hill: J. Mech. Phys. Solids, 1966, vol. 14, p. 95.CrossRefGoogle Scholar
  36. 36.
    Y. Fukuda, K. Oh, M. Furukawa, and T.G. Langdon: Acta Mater., 2004, vol. 52, pp. 1387–95.CrossRefGoogle Scholar
  37. 37.
    S.Y. Li, I.J. Beyerlein, C.T. Necker, D.J. Alexander, and M. Bourke: Acta Mater., 2004, vol. 52, pp. 4859–75.CrossRefGoogle Scholar
  38. 38.
    P. Franciosi, M. Berveiller, and A. Zaoui: Acta Metall. Mater., 1980, vol. 28, pp. 273–83.CrossRefGoogle Scholar
  39. 39.
    Mao Liu, Cheng Lu, Kiet Tieu, and Hailiang Yu: Mater. Sci. Eng. A, 2014, vol. 619, pp. 57–65.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • M. Liu
    • 1
    Email author
  • S. Nambu
    • 1
  • K. Zhou
    • 2
  • P. F. Wang
    • 3
  • G. Lu
    • 4
  • C. Lu
    • 5
  • K. A. Tieu
    • 5
  • T. Koseki
    • 1
  1. 1.Department of Materials EngineeringThe University of TokyoTokyoJapan
  2. 2.School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
  5. 5.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations