Advertisement

Effects of Pre-deformation on the Kinetics of β-Mn Phase Precipitation and Mechanical Properties in Fe–30Mn–9Al–1C Lightweight Steel

  • Jia Xing
  • Lifeng HouEmail author
  • Huayun Du
  • Baosheng Liu
  • Yinghui WeiEmail author
Article
  • 29 Downloads

Abstract

The effect of pre-deformation on the precipitation behavior of the β-Mn phase while aging at 600 °C was investigated in Fe–30Mn–9Al–1C (wt pct) steel. The accelerated precipitation and growth of the β-Mn phase along the grain boundaries and deformation bands are ascribed to variations in the microstructure and storage energy. The precipitation kinetics of the β-Mn phase can be restrained using the Johnson–Mehl–Avrami model. The high storage energy level resulting from the pre-deformation facilitates the nucleation of the β-Mn phase. The characteristics of the grain boundaries and deformation bands as a channel for rapid diffusion of the solute atoms is beneficial for the growth of the β-Mn phase. In addition, the existence of intergranular κ-carbides causes the β-Mn phase to precipitate earlier than α-ferrite during the aging treatment. Finally, the precipitation of the β-Mn phase increases the hardness but dramatically reduces the plasticity.

Notes

Acknowledgments

The above study was supported by the National Natural Science Foundation of China (Grant No. 51374151), the Key Scientific Research Project in Shanxi Province (Grant Nos. MC2014-03, MC2016-06, and 201603D111004), the Research Project Supported by the Shanxi Scholarship Council of China (2017-029), and the Patent Promotion and Implement Found of Shanxi Province (20171003).

References

  1. 1.
    H. Kim, D.-W. Suh, and N. J. Kim: Sci. Technol. Adv. Mater., 2013, vol. 14, art. no. 014205.Google Scholar
  2. 2.
    D.Raabe, H. Springer, I.Gutierrez-Urrutia, F. Roters, M. Bausch, J. -B. Seol, M. Koyama, P.-P. Choi, and K. Tsuzaki: JOM, 2014, vol. 66, pp. 1845-1856.CrossRefGoogle Scholar
  3. 3.
    G. Frommeyer, and U. Brux: Steel Res. Int., 2006, vol. 77, pp. 627-633.CrossRefGoogle Scholar
  4. 4.
    K.-T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choi, and C. S. Lee: Mater. Sci. Eng., A, 2010, vol. 527, pp. 3651-3661.CrossRefGoogle Scholar
  5. 5.
    J. Xing, Y. Wei, and L. Hou: JOM, 2018, vol. 70, pp. 929-37.CrossRefGoogle Scholar
  6. 6.
    K. M. Chang, C. G. Chao, and T. F. Liu: Scr. Mater., 2010, vol. 63, pp. 162-165.CrossRefGoogle Scholar
  7. 7.
    K. C. H. Kumar, and V. Raghavan: J. Phase Equilib., 1991, vol. 12, pp. 275-286.CrossRefGoogle Scholar
  8. 8.
    M. Palm, and G. Inden: Intermetallics, 1995, vol. 3, pp. 443-454.CrossRefGoogle Scholar
  9. 9.
    K. Choi, C. H. Seo, H. Lee, S. K. Kim, J. H. Kwak, K. G. Chin, K. T. Park, and N. J. Kim: Scr. Mater., 2010, vol. 63, pp. 1028-31.CrossRefGoogle Scholar
  10. 10.
    W. J. Lu, X. F. Zhang, and R. S. Qin: Mater. Lett., 2015, vol. 138, pp. 96-99.CrossRefGoogle Scholar
  11. 11.
    K. Lee, S.-J. Park, J. Lee, J. Moon, J.-Y. Kang, D.-I. Kim, J.-Y. Suh, and H. N. Han: J. Alloys Compd., 2016, vol. 656, pp. 805-11.CrossRefGoogle Scholar
  12. 12.
    K. Lee, S.-J. Park, J. Moon, J.-Y. Kang, T.-H. Lee, and H. N. Han: Scr. Mater., 2016, vol. 124, pp. 193-197.CrossRefGoogle Scholar
  13. 13.
    J. Hafner and D. Hobbs: Phys. Rev. B, 2003, vol. 68, art. no. 014408.Google Scholar
  14. 14.
    C.Y. Chao, C.N. Hwang, and T. F. Liu: Scr. Metall. Mater., 1993, vol. 28, pp. 109-14.CrossRefGoogle Scholar
  15. 15.
    T.F. Liu, and C. C. Wu: Scr. Metall., 1989, vol. 23, pp. 1087-1092.CrossRefGoogle Scholar
  16. 16.
    S. Y. Han, S. Y. Shin, H. J. Lee, B. J. Lee, S. Lee, N. J. Kim, and J. H. Kwak: Metall Mater Trans A, 2012, vol. 43A, pp. 843-853.CrossRefGoogle Scholar
  17. 17.
    C. Zhao, R. Song, L. Zhang, F. Yang, and T. Kang: Mater. Des., 2016, vol. 91, pp. 348-60.CrossRefGoogle Scholar
  18. 18.
    H. Ding, D. Han, J. Zhang, Z. Cai, Z. Wu, and M. Cai: Mater. Sci. Eng. A, 2016, vol. 652, pp. 69-76.CrossRefGoogle Scholar
  19. 19.
    M. C. Ha, J.-M. Koo, J.-K. Lee, S. W. Hwang, and K.-T. Park: Mater. Sci. Eng. A, 2013, vol. 586, pp. 276-283.CrossRefGoogle Scholar
  20. 20.
    X. P. Chen, Y. P. Xu, P. Ren, W. J. Li, W. Q. Cao, and Q. Liu: Mater. Sci. Eng. A, 2017, vol. 703, pp. 167-172.CrossRefGoogle Scholar
  21. 21.
    J. Moon, S. J. Park, C. Lee, H. N. Han, T. H. Lee, and C. H. Lee: Metall. Mater. Trans. A 2017, vol. 48A, pp. 4500-10.CrossRefGoogle Scholar
  22. 22.
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3076-3090.CrossRefGoogle Scholar
  23. 23.
    A. Dumay, J. P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A 2008, vol. 483-484, pp. 184-187.CrossRefGoogle Scholar
  24. 24.
    K. H. Han, and W. K. Choo: Metall. Trans. A, 1983, vol. 14, pp. 973-975.CrossRefGoogle Scholar
  25. 25.
    S. C. Tjong: Mater. Charact., 1990, vol. 24, pp. 275-92.CrossRefGoogle Scholar
  26. 26.
    K. Lee, S.-J. Park, J.-Y. Kang, S. Park, S. S. Han, J. Y. Park, K. H. Oh, S. Lee, A. D. Rollett, and H. N. Han: J. Alloys Compd., 2017, vol. 723, pp. 146-156.CrossRefGoogle Scholar
  27. 27.
    K. SATO, K. TAGAWA, and Y. INOUE: Metall. Trans. A, 1990, vol. 21A, pp. 5-11.CrossRefGoogle Scholar
  28. 28.
    R. Umino, X. J. Liu, Y. Sutou, C. P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida: J. Phase Equilib. Diffus., 2006, vol. 27, pp. 54-62.CrossRefGoogle Scholar
  29. 29.
    Kwan H. Han, and W. K. Choo: Metall. Trans. A, 1989, vol. 20A, pp. 205-14.CrossRefGoogle Scholar
  30. 30.
    A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe: Acta Mater., 2017, vol. 124, pp. 305-15.CrossRefGoogle Scholar
  31. 31.
    M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-1112.CrossRefGoogle Scholar
  32. 32.
    M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-224.CrossRefGoogle Scholar
  33. 33.
    M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177-184.CrossRefGoogle Scholar
  34. 34.
    K. Barmak: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2711-2775.CrossRefGoogle Scholar
  35. 35.
    F. Lin, Y. Zhang, N. Tao, W. Pantleon, and D. Juul Jensen: Acta Mater., 2014, vol. 72, pp. 252-261.CrossRefGoogle Scholar
  36. 36.
    M. Oyarzábal, A. Martínez-de-Guerenu, and I. Gutiérrez: Mater. Sci. Eng. A, 2008, vol. 485, pp. 200-209.CrossRefGoogle Scholar
  37. 37.
    J. L. Bocos, E. Novillo, M. M. Petite, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34, pp. 827-839.CrossRefGoogle Scholar
  38. 38.
    J. Wan, H. Ruan, J. Wang, and S. Shi: Mater. Sci. Eng. A, 2018, vol. 711, pp. 571-578.CrossRefGoogle Scholar
  39. 39.
    Y. Jiang, R. C. Gu, Y. Zhang, and J. T. Wang: Mater. Sci. Eng. A, 2018, vol. 721, pp. 226-233.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanP.R. China
  2. 2.College of Materials Science and EngineeringTaiyuan University of Science and TechnologyTaiyuanP.R. China

Personalised recommendations