Metallurgical and Materials Transactions A

, Volume 50, Issue 6, pp 2860–2874 | Cite as

Microstructure and Wear Properties of Surface Composite Layer Produced by Friction Stir Processing (FSP) in AA2024-T351 Aluminum Alloy

  • R. Acuña
  • M. J. CristóbalEmail author
  • C. M. Abreu
  • M. Cabeza


Friction stir processing (FSP) is applied to create surface metal–matrix composites (SMMCs). This study aims to develop defect-free surface composites on AA2024 aluminum alloy with structural hardening (T351). It focuses on the effect of the number and direction of FSP passes on the particle distribution and microstructural modifications of the processed region, and their relationship with wear behavior of the composite layers. Results confirm that FSP can fabricate an SMMC with an acceptable homogeneous dispersion of particles. An electron backscatter diffraction (EBSD) technique is used to investigate the evolution of the grain size through the different regions of the friction stir-processed (FSPed) samples, indicating a significant grain size reduction in the nugget zone because of dynamic recrystallization. The surface properties are studied by measuring hardness and resistance to sliding wear. Although SMMC hardness at the nugget is similar to the base material, it demonstrates improved wear resistance. Under the sliding conditions of this study, specific wear rate is reduced significantly (between 24 and 40 pct) with respect to the as-received aluminum alloy. Moreover, the worn tracks indicate the same wear mechanisms operating simultaneously in both materials.



The authors wish to acknowledge the financial support of the Ministry of Economy and Competitiveness under project MAT2014-55415-C3-2-R. Furthermore, the authors wish to express their sincere thanks to the Technological Centre AIMEN for the fabrication of the surface composite layers by FSP.


  1. 1.
    D.B. Miracle: Compos. Sci. Technol., 2005, vol. 65, pp. 2526–40.CrossRefGoogle Scholar
  2. 2.
    J.A. Picas, J. Guasch, A. Forn, A. Castaño, E. Ruperez: An. Mecánica La Fract., 2006, vol. 1, pp. 311–6.Google Scholar
  3. 3.
    C. Hu and T.N.R. Bake: J. Mater. Sci., 2010, vol. 32, pp. 5047–51.CrossRefGoogle Scholar
  4. 4.
    S.-H. Choo, S. Lee, S.-J. Kwon: Metall. Mater. Trans. A., 1999, vol. 30, pp. 3131–41.CrossRefGoogle Scholar
  5. 5.
    M. Gui and S. Bong: Mater. Lett., 2000, 46, 296–302.CrossRefGoogle Scholar
  6. 6.
    A.N. Attia: Mater. Des., 2001, vol. 22, pp. 451–7.CrossRefGoogle Scholar
  7. 7.
    R.S. Mishra, N. Kumar, P. De: Friction Stir Welding and Processing, Springer, London (UK), 2014.CrossRefGoogle Scholar
  8. 8.
    E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi: Wear., 2010, vol. 268, pp. 1111–21.CrossRefGoogle Scholar
  9. 9.
    M. Khorrami, M. Kazeminezhad, A.H. Kokabi: Mater. Sci. Eng. A., 2014, 602, 110–8.CrossRefGoogle Scholar
  10. 10.
    G. Huang, Y. Shen, R. Guo, W. Guan: Mater. Sci. Eng. A., 2016, vol. 674, pp. 504–13.CrossRefGoogle Scholar
  11. 11.
    J. Gandra, P. Vigarinho, D. Pereira, R.M. Miranda, A. Velhinho, P. Vilaça: Mater. Des., 2013, vol. 52, pp. 373–83.CrossRefGoogle Scholar
  12. 12.
    S. Sahraeinejad, H. Izadi, M. Haghshenas: Mater. Sci. Eng. A. 2015, 626, 505–13.CrossRefGoogle Scholar
  13. 13.
    D. Deepak, R.S. Sidhu, V.K. Gupta: Int. J. Mech. Eng., 2013, vol. 3, pp. 1–11.Google Scholar
  14. 14.
    M.A. Moghaddas and S.F. Kashani-Bozorg: Mater. Sci. Eng. A., 2013, vol. 559, pp. 187–93.CrossRefGoogle Scholar
  15. 15.
    P. Zangabad, F. Khodabakhshi, A. Simchi, A.H. Kokabi: Int. J. Fatigue., 2016, 87, 266–78.CrossRefGoogle Scholar
  16. 16.
    R.. S. Mishra and Z.Y. Ma, I. Charit: Mater. Sci. Eng. A., 2003, vol. 341, pp. 307–310.CrossRefGoogle Scholar
  17. 17.
    S. Soleymani, A. Abdollah-zadeh, S.A. Alidokht: Wear., 2012, vols. 278–9, pp. 41–47.CrossRefGoogle Scholar
  18. 18.
    F. Khodabakhshi, A.P. Gerlich, P. Švec: Mater. Sci. Eng. A., 2017, vol. 698, pp. 313–25.CrossRefGoogle Scholar
  19. 19.
    F. Khodabakhshi, A. Simchi, A.H. Kokabi: Surf. Coatings Technol., 2017, vol. 309, pp. 114–23.CrossRefGoogle Scholar
  20. 20.
    N. Yuvaraj, S. Aravindan, Vipin: J. Mater. Res. Technol., 2015, vol. 4, pp. 398–410.CrossRefGoogle Scholar
  21. 21.
    M. Rahsepar and H. Jarahimoghadam: Mater. Sci. Eng. A.; 2016, vol. 671, pp. 214–220.CrossRefGoogle Scholar
  22. 22.
    M. Ashjari, A. Mostafapour, S. Rouhi: Mater. Sci. Eng. A. 2015, 645, 40–46.CrossRefGoogle Scholar
  23. 23.
    A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei-Hanzaki: Mater. Sci. Eng. A., 2009, vol. 500, pp. 84–91.CrossRefGoogle Scholar
  24. 24.
    A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A.Z. Hanzaki: Wear., 2011, vol. 270, pp. 403–12.CrossRefGoogle Scholar
  25. 25.
    R. Dhayalan, K. Kalaiselvan, R. Sathiskumar: Procedia Eng., 2014, vol. 97, pp. 625–31.CrossRefGoogle Scholar
  26. 26.
    M. Narimani, B. Lotfi, Z. Sadeghian: Surf. Coatings Technol., 2016, vol. 285, pp. 1–10.CrossRefGoogle Scholar
  27. 27.
    Z. Du, M.J. Tan, J.F. Guo, G. Bi, J. Wei: Mater. Sci. Eng. A., 2016, vol. 667, pp. 125–31.CrossRefGoogle Scholar
  28. 28.
    H.G. Rana, V.J. Badheka, A. Kumar: Procedia Technol., 2016, vol. 23, pp. 519–28.CrossRefGoogle Scholar
  29. 29.
    A. Devaraju, A. Kumar, A. Kumaraswamy, B. Kotiveerachari: J. Mater. Res. Technol., 2013, vol. 2, pp. 362–69.CrossRefGoogle Scholar
  30. 30.
    K.G. Budinski, M.K. Budinski: Engineering Materials. Properties and Selection. Pearson, New Jersey, 2010, pp. 465-500.Google Scholar
  31. 31.
    Y. Mazaheri, F. Karimzadeh, M.H. Enayati: J. Mater. Process. Technol., 2011, vol. 211, pp. 1614–19.CrossRefGoogle Scholar
  32. 32.
    J. Gandra, R. Miranda, P. Vilaa, A. Velhinho, J.P. Teixeira: J. Mater. Process. Technol., 2011, vol. 211, pp. 1659–68.CrossRefGoogle Scholar
  33. 33.
    V. Randle: Mater. Charact., 2009, vol. 60, pp. 913–22.CrossRefGoogle Scholar
  34. 34.
    R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R Reports., 2005, vol. 50, pp. 1–78.CrossRefGoogle Scholar
  35. 35.
    L.R. Higginson and C.M. Sellars: Work Examples in Quantitative Metallography, Maney Publishing, London UK, 2003.Google Scholar
  36. 36.
    A. Boag, A.E. Hughes, N.C. Wilson, A. Torpy, C.M. MacRae, A.M. Glenn, T.H. Muster: Corros. Sci., 2009, vol. 51, pp. 1565–68.CrossRefGoogle Scholar
  37. 37.
    A.E. Hughes, A.M. Glenn, N. Wilson, A. Moffatt, A.J. Morton, R.G. Buchheit: Surf. Interface Anal., 2013, vol. 45, pp. 1558–63.CrossRefGoogle Scholar
  38. 38.
    V. Guillaumin and G. Mankowski: Corros. Sci., 1999, vol. 41, pp. 421–38.CrossRefGoogle Scholar
  39. 39.
    V. Randle: Microtexture determination and its applications, Maney publishing, London (UK), 2008.Google Scholar
  40. 40.
    S. Mironov, Y. Motohashi, R. Kaibyshev, H. Somekawa, T. Mukai, K. Tsuzaki: Mater. Trans., 2009, vol. 50, pp. 610–17.CrossRefGoogle Scholar
  41. 41.
    M. Mahoney, R.S. Mishra, T. Nelson, J. Flintoff, R. Islamgaliev, Y. Hovansky: Friction Stir Welding and Processing, TMS, Warrendale USA, 2001.Google Scholar
  42. 42.
    P.S. Pao, E. Lee, C.R. Feng, H.N. Jones, D.W. Moon, (Eds.): Friction Stir Welding and Processing II, TMS, Warrendale USA, 2003.Google Scholar
  43. 43.
    C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-Cottignies: Acta Mater., 2005, vol. 53, pp. 2447–58.CrossRefGoogle Scholar
  44. 44.
    C.Y.H. Lim, S.C. Lim, M. Gupta: Wear., 2003, vol. 255, pp. 629–37.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • R. Acuña
    • 1
  • M. J. Cristóbal
    • 1
    Email author
  • C. M. Abreu
    • 1
  • M. Cabeza
    • 1
  1. 1.ENCOMAT GroupUniversity of VigoVigoSpain

Personalised recommendations