Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2342–2355 | Cite as

Hot Deformation Behavior and Microstructural Evolution of an Fe-Cr-W-Mo-V-C Steel

  • Shanju Zheng
  • Xiaohong YuanEmail author
  • Xing GongEmail author
  • Thiquynhxuan Le
  • A. V. Ravindra


The hot compression deformation behavior and microstructural evolution of an Fe-Cr-W-Mo-V-C steel have been investigated by hot compression deformation experiments carried out at 900 °C to 1150 °C and under strain rates varying from 10 to 0.1 s−1. The results revealed that the flow stress decreased with decreasing strain rate, while increasing deformation temperature led to a lower flow stress. An Arrhenius-type equation was used to analyze the effects of the strain rate and deformation temperature on the plastic flow behavior of the steel. Based on this equation and the experimental results, the average activation energy was calculated to be 747.7 kJ/mol. The tested samples were subjected to careful microstructural examinations, with a focus on determination of the dynamic recrystallization (DRX) grain sizes. A straightforward contour map correlating the DRX grain sizes with the different deformation conditions was drawn. According to this map and the microstructural examination results, the optimum hot working parameters enabling us to obtain appropriate DRX microstructures have been identified at 0.1 s−1 for the strain rate and 1100 °C for the deformation temperature.



This work was financially supported by the China Postdoctoral Science Foundation (Grant No. 2018M643534) and the Natural Science Foundation of China (Grant No. 51801129).


  1. 1.
    H.C. Li, Z.Y. Jiang, A.K. Tieu, and W.H. Sun: Wear, 2007, vol. 263, pp. 1442–46.CrossRefGoogle Scholar
  2. 2.
    D.F. Chang: J. Mater. Process. Technol., 1999, vol. 94, pp. 45–51.CrossRefGoogle Scholar
  3. 3.
    J. Guo, B. Liao, L.G. Liu, Q. Li, X.J. Ren, and Q.X. Yang: Mater. Des., 2013, vol. 52, pp. 1027–34.CrossRefGoogle Scholar
  4. 4.
    O.A. Gali, M. Shafiei, J.A. Hunter, and A.R. Riahi: J. Mater. Process. Technol., 2016, 237, 331–41.CrossRefGoogle Scholar
  5. 5.
    J. Guo, L. Ai, T. Wang, Y. Feng, D. Wan, and Q. Yang: Mater. Sci. Eng. A, 2018, vol. 715, pp. 359–69.CrossRefGoogle Scholar
  6. 6.
    G.Y. Deng, Q. Zhu, K. Tieu, H.T. Zhu, M. Reid, A.A. Saleh, L.H. Su, T.D. Ta, J. Zhang, C. Lu, Q. Wu, and D.L. Sun: J. Mater. Process. Technol., 2017, vol. 240, pp. 200–08.CrossRefGoogle Scholar
  7. 7.
    L.J. Xu, S.Z. Wei, F.N. Xiao, H. Zhou, and J.W. Li: Wear, 2017, vols. 376–377, pp. 968–74.CrossRefGoogle Scholar
  8. 8.
    K.C. Hwang, S. Lee, and H.C. Lee: Mater. Sci. Eng. A, 1998, vol. 254, pp. 282–95.CrossRefGoogle Scholar
  9. 9.
    J. Guo, L.G. Liu, Q. Li, Y.L. Sun, Y.K. Gao, X.J. Ren, and Q.X. Yang: Mater. Charact., 2013, vol. 79, pp. 100–09.CrossRefGoogle Scholar
  10. 10.
    H.C. Li, Z.Y. Jiang, A.K. Tieu, W.H. Sun, and D.B. Wei: Wear, 2011, vol. 271, pp. 2500–11.CrossRefGoogle Scholar
  11. 11.
    J. Guo, L.G. Liu, S. Liu, Y.F. Zhou, X.W. Qi, X.J. Ren, and Q.X. Yang: Mater. Des., 2016, vol. 106, pp. 355–62.CrossRefGoogle Scholar
  12. 12.
    J. Guo, S. Liu, Y.F. Zhou, J.B. Wang, X.L. Xing, X.J. Ren, and Q.X. Yang: Mater. Lett., 2016, vol. 171, pp. 216–19.CrossRefGoogle Scholar
  13. 13.
    J. Guo, L.G. Liu, Y.L. Feng, S. Liu, X.J. Ren, and Q.X. Yang: Metall. Mater. Int., 2017, vol. 23, pp. 313–19.CrossRefGoogle Scholar
  14. 14.
    Y.J. Shi, X.C. Wu, J.W. Li, and N. Min: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 1145–57.CrossRefGoogle Scholar
  15. 15.
    K. Wieczerzaka, P. Bala, M. Stepien, G. Ciosb, and T. Koziel: Mater. Des., 2016, vol. 94, pp. 61–68.CrossRefGoogle Scholar
  16. 16.
    D.M. Stefanescu, G. Alonso, P. Larrañaga, and R. Suarez: Acta Mater., 2016, vol. 103, pp. 103–14.CrossRefGoogle Scholar
  17. 17.
    K. Wieczerzak, P. Bala, R. Dziurka, T. Tokarski, G. Cios, T. Koziel, and L. Gondek: J. Alloys Compd., 2017, vol. 698, pp. 673–84.CrossRefGoogle Scholar
  18. 18.
    J. Guo, H.W. Qu, L.G. Liu, Y.L. Sun, Y. Zhang, and Q.X. Yang: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 146–51.CrossRefGoogle Scholar
  19. 19.
    Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma, and D. Yi: J. Alloys Compd., 2011, vol. 509, pp. 5242–49.CrossRefGoogle Scholar
  20. 20.
    K.A. Babu, Y.H. Mozumder, R. Saha, V.S. Sarma, and S. Mandal: Mater. Sci. Eng. A, 2018, vol. 734, pp. 269–80.CrossRefGoogle Scholar
  21. 21.
    R.M. Ahmadabadi, M. Naderi, J.A. Mohandesi, and J.M. Cabrera: J. Mater. Eng. Perform., 2018, vol. 27, pp. 560–71.CrossRefGoogle Scholar
  22. 22.
    A. Hadadzadeh, F. Mokdad, M.A. Wells, and D.L. Chen: Mater. Sci. Eng. A, 2018, vol. 709, pp. 285–89.CrossRefGoogle Scholar
  23. 23.
    M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamadod, E.H. Han, and B.H. Lu: Acta Metall., 2018, vol. 157, pp. 53–71.Google Scholar
  24. 24.
    Y. Wu, H. Kou, Z. Wu, B. Tang, and J. Li: J. Alloys Compd., 2018, vol. 749, pp. 844–52.CrossRefGoogle Scholar
  25. 25.
    Y. Huang, J. Ji, and K.M. Lee: Int. J. Adv. Manuf. Technol., 2018, vol. 97, pp. 3655–70.CrossRefGoogle Scholar
  26. 26.
    Q. Xu, C. Zhang, L. Zhang, W. Shen, and Q. Yang: J. Mater. Eng. Perform., 2018, vol. 27 (9), pp. 4955–67.CrossRefGoogle Scholar
  27. 27.
    J.S. Zhang, Y.F. Xia, G.Z. Quan, X. Wang, and J. Zhou: J. Alloys Compd., 2018, vol. 743, pp. 464–78.CrossRefGoogle Scholar
  28. 28.
    T.V. Pirtovsek, G. Kugler, M. Godec, and M. Tercelj: Mater. Charact., 2011, vol. 62, pp. 189–97.CrossRefGoogle Scholar
  29. 29.
    L. Lu, L.G. Hou, H. Cui, J.F. Huang, Y.A. Zhang, and J.S. Zhang: J. Iron Steel Res., 2016, vol. 23, pp. 501–08.CrossRefGoogle Scholar
  30. 30.
    L.G. Liu, Q. Li, J. Guo, Y.L. Sun, C.T. Liang, Y.D. Yang, and Q.X. Yang: Trans. Mater. Heat Treatment, 2012, vol. 33, pp. 89–95.Google Scholar
  31. 31.
    Y.H. Liu, Y.Q. Ning, Z.K. Yao, and M.W. Fu: Mater Des., 2014, vol. 54, pp. 854–63.CrossRefGoogle Scholar
  32. 32.
    S. Zhao, J. Fan, J. Zhang, and K. Chou: Powder Metall. Met. Ceram., 2017, vol. 56, pp. 17–25.CrossRefGoogle Scholar
  33. 33.
    R.L. Goetz and S.L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–17.CrossRefGoogle Scholar
  34. 34.
    K.T. Son, M.H. Kim, S.W. Kim, J.W. Lee, and S.K. Hyun: J. Alloys Compd., 2018, vol. 740, pp. 96–108.CrossRefGoogle Scholar
  35. 35.
    Y.B. Tan, Y.H. Ma, and F. Zhao: J. Alloys Compd., 2018, vol. 741, pp. 85–96.CrossRefGoogle Scholar
  36. 36.
    A. Laasraoui and J.J. Jonas: Metall. Trans. A, 1991, vol. 22A, pp. 151–60.CrossRefGoogle Scholar
  37. 37.
    S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963–75.CrossRefGoogle Scholar
  38. 38.
    C.M. Sellars and W.J.M. Tegart: Mem. Sci. Rev. Met., 1966, vol. 63, pp. 731–46.Google Scholar
  39. 39.
    C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22–32.CrossRefGoogle Scholar
  40. 40.
    C.M. Sellars and W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136–38.CrossRefGoogle Scholar
  41. 41.
    Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen: Comput. Mater. Sci., 2010, vol. 50, pp. 227–33.CrossRefGoogle Scholar
  42. 42.
    D. Samantaray, C. Phaniraj, S. Mandal, and A.K. Bhaduri: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1071–77.CrossRefGoogle Scholar
  43. 43.
    Z. Wan, L. Hu, Y. Sun, T. Wang, and Z. Li: J. Alloys Compd., 2018, vol. 769, pp. 367–75.CrossRefGoogle Scholar
  44. 44.
    A.R. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi: Mech. Mater., 2014, vol. 71, pp. 52–61.CrossRefGoogle Scholar
  45. 45.
    Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari (2012) Mater. Sci. Eng. A, 554, 72–78.CrossRefGoogle Scholar
  46. 46.
    Y.C. Lin, S.C. Luo, L.X. Yin, and J. Huang: J. Alloys Compd., 2017, vol. 739, pp. 590–99.CrossRefGoogle Scholar
  47. 47.
    K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé: Progr. Mater. Sci., 2018, vol. 92, pp. 284–359.CrossRefGoogle Scholar
  48. 48.
    G. Cheng, X. Hu, W.E. Frazier, C.A. Lavender, and V.V. Joshi: Mater. Sci. Eng. A, 2018, vol. 736, pp. 41–52.CrossRefGoogle Scholar
  49. 49.
    Z. Sun, P.D Edmondson, and Y. Yamamoto: Acta Metall., 2018, vol. 144, pp. 716–27.Google Scholar
  50. 50.
    Q. Zhao, Z. Liu, S. Li, Y. Hu, and S. Bai: J. Alloys Compd., 2018, vol. 747, pp. 293–305.CrossRefGoogle Scholar
  51. 51.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.CrossRefGoogle Scholar
  52. 52.
    W. Xu, M. Ferry, J.M. Cairney, and F.J. Humphreys: Acta Mater., 2007, vol. 55, pp. 5157–67.CrossRefGoogle Scholar
  53. 53.
    Y. Zhang, D.J. Jensen, Y. Zhang, F. Lin, Z. Zhang, and Q. Liu: Scripta Mater., 2012, vol. 67, pp. 320–23.CrossRefGoogle Scholar
  54. 54.
    J.D. Robson, D.T. Henry, and B. Davis: Acta Mater., 2009, vol. 57, pp. 2739–47.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Faculty of Land Resource Engineering and the State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina
  2. 2.GuiYan Detection Technology Co., Ltd.KunmingChina
  3. 3.Sino-Platinum Metals Co., Ltd.KunmingChina
  4. 4.College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
  5. 5.Faculty of Metallurgical and Energy Engineering and the State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina
  6. 6.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina

Personalised recommendations