Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2443–2461 | Cite as

Microstructural Evaluation and Mechanical Properties of Al1050/TiO2-Graphite Hybrid Nanocomposite Produced Via Friction Stir Processing

  • Mohammad Farshbaf Ahmadipour
  • Mojtaba MovahediEmail author
  • Amir Hossein Kokabi
Article
  • 48 Downloads

Abstract

Production of Al1050/TiO2-graphite hybrid nanocomposite via friction stir processing (FSP) was studied. The effect of graphite-to-TiO2 volume fraction ratio (Gr/TiO2), at a constant rotational speed (ω) and three levels of tool traverse speed (ν), on the microstructural evolution and mechanical properties of the nanocomposites was investigated. While TiO2 is supposed to enhance the strength and hardness, graphite is believed to improve the tribological behavior. Furthermore, formation of intermetallic compounds (IMCs) through the solid-state reactions between the reinforcements and aluminum matrix may also promote the mechanical properties. To assess these assumptions, longitudinal and transverse tensile strength, Vickers microhardness, and pin-on-disk wear tests were performed. Microstructural changes and formation of compounds were explored using optical microscopy and field-emission–scanning electron microscopy (FE-SEM) as well as X-ray diffraction (XRD). ω/ν and Gr/TiO2 ratios were introduced as the main parameters to obtain the desirable material flow and particle distribution. The hardness of the nanocomposites increased by superior distribution of the reinforcements throughout the matrix. The yield strength of the nanocomposites increased up to ~82 and ~50 pct compared to the as-received and friction-stir-processed Al1050 with no reinforcement, respectively. The tribological behavior of nanocomposites improved by the presence of the graphite acting as a solid lubricant on the sliding surface.

Notes

References

  1. 1.
    R.S. Mishra and Z. Ma: Mater. Sci. Eng. R, 2005, vol. 50 (1–2), pp. 1–78.CrossRefGoogle Scholar
  2. 2.
    S. Sahraeinejad, H. Izadi, M. Haghshenas, and A.P. Gerlich: Mater. Sci. Eng. A, 2015, vol. 626, pp. 505–13.CrossRefGoogle Scholar
  3. 3.
    J.L. Dossett and G.E. Totten, eds.: ASM Handbook: Steel Heat Treating, Fundamentals and Processes, ASM International, Materials Park, OH, 2013, vol. 4A, pp. 1948–62.Google Scholar
  4. 4.
    M. Gui and S.B. Kang: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2383–92.CrossRefGoogle Scholar
  5. 5.
    N. Saito, I. Shigematsu, T. Komaya, T. Tamaki, G. Yamauchi, and M. Nakamura: J. Mater. Sci. Lett., 2001, vol. 20 (20), pp. 1913–15.CrossRefGoogle Scholar
  6. 6.
    A. Pilchak, M. Juhas, and J. Williams: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 401–08.CrossRefGoogle Scholar
  7. 7.
    I. Charit and R.S. Mishra: Acta Mater., 2005, vol. 53 (15), pp. 4211–23.CrossRefGoogle Scholar
  8. 8.
    J. Qian, J. Li, J. Xiong, F. Zhang, and X. Lin: Mater. Sci. Eng. A, 2012, vol. 550, pp. 279–85.CrossRefGoogle Scholar
  9. 9.
    R.S. Mishra, Z.Y. Ma, and I. Charit: Mater. Sci. Eng. A, 2003, vol. 341, pp. 307–10.CrossRefGoogle Scholar
  10. 10.
    M. Bahrami, M.K.B. Givi, K. Dehghani, and N. Parvin: Mater. Des., 2014, vol. 53, pp. 519–27.CrossRefGoogle Scholar
  11. 11.
    A. Devaraju, A. Kumar, A. Kumaraswamy, and B. Kotiveerachari: Mater. Des., 2013, vol. 51, pp. 331–41.CrossRefGoogle Scholar
  12. 12.
    J.F. Guo, J. Liu, C.N. Sun, S. Maleksaeedi, G. Bi, M.J. Tan, and J. Wei: Mater. Sci. Eng. A, 2014, vol. 602, pp. 143–49.CrossRefGoogle Scholar
  13. 13.
    C.M. Rejil, I. Dinaharan, S. Vijay, and N. Murugan: Mater. Sci. Eng. A, 2012, vol. 552, pp. 336–44.CrossRefGoogle Scholar
  14. 14.
    F. Khodabakhshi, A. Simchi, A. Kokabi, M. Sadeghahmadi, and A. Gerlich: Mater. Sci. Technol., 2015, vol. 31 (4), pp. 426–35.CrossRefGoogle Scholar
  15. 15.
    M. Eftekhari, M. Movahedi, and A.H. Kokabi: J. Mater. Eng. Perform., 2017, vol. 26 (7), pp. 3516–30.CrossRefGoogle Scholar
  16. 16.
    R. Bauri, D. Yadav, and G. Suhas: Mater. Sci. Eng. A, 2011, vol. 528 (13–14), pp. 4732–39.CrossRefGoogle Scholar
  17. 17.
    V.K.S. Jain, J. Varghese, and S. Muthukumaran: Arab. J. Sci. Eng., 2019, vol. 44, pp. 949–57.CrossRefGoogle Scholar
  18. 18.
    R. Bauri: Trans. Ind. Inst. Met., 2009, vol. 62 (4–5), pp. 391–95.CrossRefGoogle Scholar
  19. 19.
    M. Gui and S.B. Kang: Mater. Lett., 2001, vol. 51 (5), pp. 396–401.CrossRefGoogle Scholar
  20. 20.
    M. Raaft, T. Mahmoud, H. Zakaria, and T. Khalifa: Mater. Sci. Eng. A, 2011, vol. 528 (18), pp. 5741–46.CrossRefGoogle Scholar
  21. 21.
    R. Deaquino-Lara, N. Soltani, A. Bahrami, E. Gutiérrez-Castañeda, E. García-Sánchez, and M. Hernandez-Rodríguez: Mater. Des., 2015, vol. 67, pp. 224–31.CrossRefGoogle Scholar
  22. 22.
    K. Landry, S. Kalogeropoulou, and N. Eustathopoulos: Mater. Sci. Eng. A, 1998, vol. 254 (1–2), pp. 99–111.CrossRefGoogle Scholar
  23. 23.
    F. Akhlaghi and S. Pelaseyyed: Mater. Sci. Eng. A, 2004, vol. 385 (1–2), pp. 258–66.CrossRefGoogle Scholar
  24. 24.
    H. Sarmadi, A. Kokabi, and S.S. Reihani: Wear, 2013, vol. 304 (1–2), pp. 1–12.CrossRefGoogle Scholar
  25. 25.
    M. Ravichandran, A.N. Sait, and V. Anandakrishnan: Int. J. Miner. Metall. Mater., 2014, vol. 21 (2), pp. 181–89.CrossRefGoogle Scholar
  26. 26.
    E.R. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi: Wear, 2010, vol. 268 (9–10), pp. 1111–21.CrossRefGoogle Scholar
  27. 27.
    T. Thirumalai, R. Subramanian, S. Kumaran, S. Dharmalingam, and S. Ramakrishnan: J. Sci. Ind. Res., 2013, vol. 73, pp. 667–70.Google Scholar
  28. 28.
    A. Sharma, V.M. Sharma, S. Mewar, S.K. Pal, and J. Paul: Mater. Manuf. Processes, 2018, vol. 33 (7), pp. 795–804.CrossRefGoogle Scholar
  29. 29.
    M. Mansumi, F. Madanisani, S. Kashani-Bozorg, and H.R. ZareieRajani: Mater. Sci. Eng. Adv. Technol., 2012, vol. 6 (1–2), pp. 29–45.Google Scholar
  30. 30.
    D. Aruri, K. Adepu, K. Adepu, and K. Bazavada: J. Mater. Res. Technol., 2013, vol. 2 (4), pp. 362–69.CrossRefGoogle Scholar
  31. 31.
    S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J. Boerio-Goates, and B.F. WoodField: Am. Mineral., 2009, vol. 94 (2–3), pp. 236–43.CrossRefGoogle Scholar
  32. 32.
    A. Lutcov, V. Volga, and B. Dymov: Carbon, 1970, vol. 8 (6), pp. 753–60.CrossRefGoogle Scholar
  33. 33.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, United Kingdom, 2004, pp. 416–37.Google Scholar
  34. 34.
    M.S. Khorrami, S. Samadi, Z. Janghorban, and M. Movahedi: Mater. Sci. Eng. A, 2015, vol. 641, pp. 380–90.CrossRefGoogle Scholar
  35. 35.
    N. Hansen and B. Bay: Acta Metall., 1981, vol. 29 (1), pp. 65–77.CrossRefGoogle Scholar
  36. 36.
    Z. Zhang and D. Chen: Scripta Mater., 2006, vol. 54 (7), pp. 1321–26.CrossRefGoogle Scholar
  37. 37.
    W. Arbegast and P. Hartley: 5th Int. Conf. on Trends in Welding Research, Pine Mountain, GA, 2002, pp. 541–46.Google Scholar
  38. 38.
    M.S. Węglowski and S. Dymek: Archfgd. CivilgfgfMech. Eng., 2013, 13(2), pp. 186–91.CrossRefGoogle Scholar
  39. 39.
    R. Nandan, T. DebRoy, and H. Bhadeshia: Progr. Mater. Sci., 2008, vol. 53 (6), pp. 980–1023.CrossRefGoogle Scholar
  40. 40.
    Ø. Frigaard, Ø. Grong, and O. Midling: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1189–1200.CrossRefGoogle Scholar
  41. 41.
    M. Đurđanović, M. Mijajlović, D. Milčić, and D. Stamenković: Tribol. Ind., 2009, vol. 31, pp. 8–14.Google Scholar
  42. 42.
    R. Miranda, T.G. Santos, J. Gandra, N. Lopes, and R. Silva: J. Mater. Process. Technol., 2013, vol. 213 (9), pp. 1609–15.CrossRefGoogle Scholar
  43. 43.
    S.T. Chiou, H.L. Tsai, and W.S. Lee: Mater. Trans., 2007, vol. 48 (9), pp. 2525–33.CrossRefGoogle Scholar
  44. 44.
    C. Hsu, C. Chang, P. Kao, N. Ho, and C. Chang: Acta Mater., 2006, vol. 54 (19), pp. 5241–49.CrossRefGoogle Scholar
  45. 45.
    Y. Kwon, I. Shigematsu, and N. Saito: Scripta Mater., 2003, vol. 49 (8), pp. 785–89.CrossRefGoogle Scholar
  46. 46.
    S. Ahmadifard, S. Kazemi, and A. Heidarpour: J. Mater. Des. Appl., 2018, vol. 232 (4), pp. 287–93.Google Scholar
  47. 47.
    D. Lloyd: Int. Mater. Rev., 1994, vol. 39 (1), pp. 1–23.CrossRefGoogle Scholar
  48. 48.
    C. Yu, P. Kao, and C. Chang: Acta Mater., 2005, vol. 53 (15), pp. 4019–28.CrossRefGoogle Scholar
  49. 49.
    C.F. Chen, P.W. Kao, L.W. Chang, and N.J. Ho: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 513–22.CrossRefGoogle Scholar
  50. 50.
    Q. Zhang, B. Xiao, Q. Wang, and Z. Ma: Mater. Lett., 2011, vol. 65 (13), pp. 2070–72.CrossRefGoogle Scholar
  51. 51.
    D. Ying, D. Zhang, and M. Newby: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2115–25.CrossRefGoogle Scholar
  52. 52.
    R. Pretorius, A. Vredenberg, F. Saris, and R. De Reus: J. Appl. Phys., 1991, vol. 70 (7), pp. 3636–46.CrossRefGoogle Scholar
  53. 53.
    S.H. Meng, X.H. Zhang, and W.F. Zhang: Key Eng. Mater., 2007, vol. 336, pp. 2340–43.CrossRefGoogle Scholar
  54. 54.
    Q. Zhang, B. Xiao, W. Wang, and Z. Ma: Acta Mater., 2012, vol. 60 (20), pp. 7090–7103.CrossRefGoogle Scholar
  55. 55.
    M.Z. Mehrizi, R. Beygi, H. Mostaan, M. Raoufi, and A. Barati: Ceram. Int., 2016, vol. 42 (15), pp. 17089–17090.CrossRefGoogle Scholar
  56. 56.
    J.Q. Su, T. Nelson, R. Mishra, and M. Mahoney: Acta Mater., 2003, vol. 51 (3), pp. 713–29.CrossRefGoogle Scholar
  57. 57.
    M. Fine and J. Conley: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 2609–10.CrossRefGoogle Scholar
  58. 58.
    T. Akao, K. Tonoko, T. Onda, and Z.C. Chen: J. Sust. Res. Eng., 2015, vol. 2 (2), pp. 45–52.Google Scholar
  59. 59.
    J.W. Kim, J.M. Lee, J.H. Lee, and J.C. Lee: Met. Mater. Int., 2014, vol. 20 (6), pp. 1151–56.CrossRefGoogle Scholar
  60. 60.
    D. Zhang, D. Ying, and P. Munroe: J. Mater. Res., 2005, vol. 20 (2), pp. 307–13.CrossRefGoogle Scholar
  61. 61.
    J. Shin, H. Choi, M. Cho, and D. Bae: J. Compos. Mater., 2014, vol. 48 (1), pp. 99–106.CrossRefGoogle Scholar
  62. 62.
    J.J. Payyapilly: Ph.D. Dissertation, Virginia Tech, Blacksburg, VA, 2008, pp. 76–79.Google Scholar
  63. 63.
    H. Liu, H. Fujii, M. Maeda, and K. Nogi: J. Mater. Process. Technol., 2003, vol. 142 (3), pp. 692–96.CrossRefGoogle Scholar
  64. 64.
    M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A. Kokabi: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 188–97.CrossRefGoogle Scholar
  65. 65.
    E. Hall: Proc. Phys. Soc., 1951, Sect. B, vol. 64 (9), p. 742–47.CrossRefGoogle Scholar
  66. 66.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  67. 67.
    J. Eshelby, F. Frank, and F. Nabarro: London, Edinburgh, Dublin Philos. Mag. J. Sci., 1951, vol. 42 (327), pp. 351–64.CrossRefGoogle Scholar
  68. 68.
    Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda: Mater. Sci. Eng. A, 2003, vol. 354 (1–2), pp. 298–305.CrossRefGoogle Scholar
  69. 69.
    H. Fujita and T. Tabata: Acta Metall., 1973, vol. 21 (4), pp. 355–65.CrossRefGoogle Scholar
  70. 70.
    N. Hansen: Acta Metall., 1977, vol. 25 (8), pp. 863–69.CrossRefGoogle Scholar
  71. 71.
    T. Shanmugasundaram, M. Heilmaier, B. Murty, and V.S. Sarma: Mater. Sci. Eng. A, 2010, vol. 527 (29–30), pp. 7821–25.CrossRefGoogle Scholar
  72. 72.
    N. Hansen: Scripta Mater., 2004, vol. 51 (8), pp. 801–06.CrossRefGoogle Scholar
  73. 73.
    S. Hsu, M. Shen, and A. Ruff: Tribol. Int., 1997, vol. 30 (5), pp. 377–83.CrossRefGoogle Scholar
  74. 74.
    M.R. Rosenberger, E. Forlerer, and C. Schvezov: Wear, 2009, vol. 266 (1–2), pp. 356–59.CrossRefGoogle Scholar
  75. 75.
    M. Rosenberger, C. Schvezov, and E. Forlerer: Wear, 2005, vol. 259 (1–6), pp. 590–601.CrossRefGoogle Scholar
  76. 76.
    F. Gul and M. Acilar: Compos. Sci. Technol., 2004, vol. 64 (13–14), pp. 1959–70.CrossRefGoogle Scholar
  77. 77.
    A.M. Asl and S.T. Khandani: J. Mater. Sci. Eng. A, 2013, vol. 559, pp. 549–57.CrossRefGoogle Scholar
  78. 78.
    B. Bhushan: Modern Tribology Handbook, CRC Press, Boca Raton, FL, 2001, pp. 787–825.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Mohammad Farshbaf Ahmadipour
    • 1
  • Mojtaba Movahedi
    • 1
    Email author
  • Amir Hossein Kokabi
    • 1
  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations