Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2126–2138 | Cite as

Achieving Gradient Martensite Structure and Enhanced Mechanical Properties in a Metastable β Titanium Alloy

  • Xinkai Ma
  • Fuguo LiEmail author
  • Zhankun Sun
  • Junhua Hou
  • Xiaotian Fang
  • Yuntian ZhuEmail author
  • Carl C. Koch
Article
  • 142 Downloads

Abstract

Gradient materials have been reported to have superior strength–ductility combinations. In this study, gradient α″ martensite were introduced along the radial direction of cylindrical Ti-10V-2Al-3Fe (Ti-1023) samples by torsional straining, which simultaneously improved strength and ductility. The torsional strain gradient produced martensite gradient with increasing density and decreasing thickness from center to surface. α″ martensite had parallel and V-shaped morphology, which not only divided coarse β grains into finer β blocks but also blocked dislocation slip. In addition, dislocation slip in the α″ martensite and β blocks led to grain refinement. The formation of geometrically necessary dislocation (GNDs) and the increasing shear stress required for martensitic transformation contributed to high strain hardening. An optimal gradient distribution exists in torsion-processed samples for the optimal mechanical properties.

Notes

Acknowledgments

This work was supported by the China Scholarship Council (No. 201706290055, awarded to Xinkai Ma for two-year abroad study at the North Carolina State University); the National Natural Science Foundation of China (Grant Nos. 51275414, 51605387); the Fundamental Research Funds for the Central Universities with Grant No. 3102015BJ (II) ZS007; the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No.130-QP-2015); and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. Z2018076).

References

  1. 1.
    K. Lu, Sci, 2014, vol. 345, pp. 1455-1456.CrossRefGoogle Scholar
  2. 2.
    X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, P Natl Acad Sci, 2014, vol. 111, pp. 7197-7201.CrossRefGoogle Scholar
  3. 3.
    R. Thevamaran, O. Lawal, S. Yazdi, S.-J. Jeon, J.-H. Lee, E.L. Thomas, Sci, 2016, vol. 354, pp. 312-316.CrossRefGoogle Scholar
  4. 4.
    I. Ovid’ko, R. Valiev, Y. Zhu, Prog Mater Sci, 94: 462 (2018)Google Scholar
  5. 5.
    X. Bian, F. Yuan, Y. Zhu, X. Wu, Mater Res Lett, 2017, 5, 501-507.CrossRefGoogle Scholar
  6. 6.
    X. Wu, Y. Zhu, Mater Res Lett, 2017, vol. 5, pp. 527-532.CrossRefGoogle Scholar
  7. 7.
    X. Wu, P. Jiang, L. Chen, J. Zhang, F. Yuan, Y. Zhu, Mater Res Lett, 2014, vol. 2, pp. 185-191.CrossRefGoogle Scholar
  8. 8.
    M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater Res Lett, 2016, vol. 4, pp. 145-151.CrossRefGoogle Scholar
  9. 9.
    A. Chen, J. Liu, H. Wang, J. Lu, Y.M. Wang, Mater Sci Eng: A,2016, vol. 667, pp. 179-188.CrossRefGoogle Scholar
  10. 10.
    X. Liu, H. Zhang, K. Lu, Sci, 2013, vol. 342, pp. 337-340.CrossRefGoogle Scholar
  11. 11.
    H. Wang, N. Tao, K. Lu, Scripta Mater, 2013, vol. 68, pp. 22-27.CrossRefGoogle Scholar
  12. 12.
    Z. Ma, J. Liu, G. Wang, H. Wang, Y. Wei, H. Gao, Sci Rep, 2016, vol. 6, pp. 22156.CrossRefGoogle Scholar
  13. 13.
    A. Chen, H. Ruan, J. Wang, H. Chan, Q. Wang, Q. Li, J. Lu, Acta Mater, 2011, vol. 59, pp. 3697-3709.CrossRefGoogle Scholar
  14. 14.
    Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, Nat Commun, 2014, vol. 5, pp 3580.CrossRefGoogle Scholar
  15. 15.
    L. Lu, X. Chen, X. Huang, K. Lu, Sci, 2009, vol. 323, pp. 607-610.CrossRefGoogle Scholar
  16. 16.
    H. Wang, N. Tao, K. Lu, Acta Mater, 2012, vol. 60, pp. 4027-4040.CrossRefGoogle Scholar
  17. 17.
    C. Shao, P. Zhang, Y. Zhu, Z. Zhang, Y. Tian, Z. Zhang, Acta Mater, 2017, vol. 145, pp.413-428.CrossRefGoogle Scholar
  18. 18.
    Y. Kulkarni, R.J. Asaro, D. Farkas, Scripta Mater, 2009, vol. 60, pp. 532-535.CrossRefGoogle Scholar
  19. 19.
    J. Moering, X. Ma, G. Chen, P. Miao, G. Li, G. Qian, S. Mathaudhu, Y. Zhu, Scripta Mater, 2015, vol. 108, pp.100-103.CrossRefGoogle Scholar
  20. 20.
    A. Bhattacharjee, V. Varma, S. Kamat, A. Gogia, S. Bhargava, Metall Mater Trans A, 2006, vol. 37, pp. 1423-1433.CrossRefGoogle Scholar
  21. 21.
    A. Zafari, K. Xia, Mater Sci Eng: A, 2018, vol. 724, pp. 75-79.CrossRefGoogle Scholar
  22. 22.
    D. Qin, Y. Lu, D. Guo, L. Zheng, Q. Liu, L. Zhou, Mater Sci Eng: A, 2013, vol. 587, pp. 100-109.CrossRefGoogle Scholar
  23. 23.
    Z. Wyatt, S. Ankem, J Mater Sci, 2010, vol. 45, pp. 5022-5031.CrossRefGoogle Scholar
  24. 24.
    W. Xu, K. Kim, J. Das, M. Calin, J. Eckert, Scripta Mater, 2006, vol. 54, pp. 1943-1948.CrossRefGoogle Scholar
  25. 25.
    A. Paradkar, S. Kamat, A. Gogia, B. Kashyap, Metall Mater Trans A, 2008, vol. 39, pp. 551-558.CrossRefGoogle Scholar
  26. 26.
    C. Li, X. Wu, J. Chen, S. van der Zwaag, Mater Sci Eng: A,2011, vol. 528, pp. 5854-5860.CrossRefGoogle Scholar
  27. 27.
    F. Sun, J. Zhang, M. Marteleur, C. Brozek, E. Rauch, M. Veron, P. Vermaut, P. Jacques, F. Prima, Scripta Mater, 2015, vol. 94, pp. 17-20CrossRefGoogle Scholar
  28. 28.
    S. Sadeghpour, S. Abbasi, M. Morakabati, A. Kisko, L. Karjalainen, D. Porter, Scripta Mater, 2018, vol.145, pp. 104-108.CrossRefGoogle Scholar
  29. 29.
    X. Ma, F. Li, J. Cao, J. Li, Z. Sun, G. Zhu, S. Zhou, Mater Sci Eng: A, 2018, vol. 710, pp. 1-9.CrossRefGoogle Scholar
  30. 30.
    P. Barriobero-Vila, J. Gussone, K. Kelm, J. Haubrich, A. Stark, N. Schell, G. Requena, Mater Sci Eng: A, 2018, vol. 717, pp. 134-143.CrossRefGoogle Scholar
  31. 31.
    T. Yao, K. Du, H. Wang, Z. Huang, C. Li, L. Li, Y. Hao, R. Yang, H. Ye, Acta Mater, 2017, vol. 133, pp. 21-29.CrossRefGoogle Scholar
  32. 32.
    T. Fang, W. Li, N. Tao, K. Lu, Sci, 2011, 331, 1200177.Google Scholar
  33. 33.
    X. Ma, F. Li, J. Cao, J. Li, H. Chen, C. Zhao, Mater Design, 2017, vol. 114, pp. 271-281.CrossRefGoogle Scholar
  34. 34.
    N. Guo, X. Li, M. Xiao, R. Xin, L. Chai, B. Song, H. Yu, L. Li, Adv Eng Mater, 2016, vol. 18, pp. 1738-1746.CrossRefGoogle Scholar
  35. 35.
    C. Wang, F. Li, J. Li, J. Dong, F. Xue, Mater Sci Eng: A, 2014, vol. 598, pp. 7-14.CrossRefGoogle Scholar
  36. 36.
    L. Sun, K. Muszka, B. Wynne, E. Palmiere, Palmiere, Acta Mater, 2014, vol.66, pp. 132-149.CrossRefGoogle Scholar
  37. 37.
    N. Guo, Z. Zhang, Q. Dong, H. Yu, B. Song, L. Chai, C. Liu, Z. Yao, M.R. Daymond, Mater Design, 2018, vol. 143, pp.150-159.CrossRefGoogle Scholar
  38. 38.
    X. Ma, F. Li, J. Cao, Z. Sun, Q. Wan, J. Li, Z. Yuan, J Alloy Compd, 2017, vol. 703, pp. 298-308.CrossRefGoogle Scholar
  39. 39.
    Y. Estrin, A. Vinogradov, Acta mater, 2013, vol. 61, pp. 782-817.CrossRefGoogle Scholar
  40. 40.
    R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, Adv Eng Mater, 2006, vol. 8, pp. 1046-1056.CrossRefGoogle Scholar
  41. 41.
    W. Chen, Q. Sun, L. Xiao, J. Sun, Metall Mater Trans A, 2012, vol. 43, pp. 316-326.CrossRefGoogle Scholar
  42. 42.
    X. Ma, F. Li, X. Fang, Z. Li, Z. Sun, J. Hou, J. Cao, J Alloy Compd, 2019, vol. 784, pp.111-116.CrossRefGoogle Scholar
  43. 43.
    W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia, Scripta Mater, 60, 1012-1015 (2009)CrossRefGoogle Scholar
  44. 44.
    T. Duerig, J. Albrecht, D. Richter, P. Fischer, Acta Metall, 1982, vol. 30, pp. 2161-2172.CrossRefGoogle Scholar
  45. 45.
    Y. Chai, H. Kim, H. Hosoda, S. Miyazaki, Acta Mater, 2009, vol. 57, pp. 4054-4064.CrossRefGoogle Scholar
  46. 46.
    M. Kružík, A. Mielke, T. Roubíček, Meccanica, 2005, vol. 40, pp. 389-418.CrossRefGoogle Scholar
  47. 47.
    A. Zafari, X. Wei, W. Xu, K. Xia, Acta Mater, 2015, vol. 97, pp. 146-155.CrossRefGoogle Scholar
  48. 48.
    W. Xu, K. Kim, J. Das, M. Calin, B. Rellinghaus, J. Eckert, Appl Phys Lett, 2006, vol. 89, pp.031906.CrossRefGoogle Scholar
  49. 49.
    S. Sadeghpour, S. Abbasi, M. Morakabati, J Alloy Compd, 2015, vol. 650, pp.22-29.CrossRefGoogle Scholar
  50. 50.
    T. Grosdidier, M.-J. Philippe, Mater Sci Eng: A, 2000, vol. 291, pp. 218-223.CrossRefGoogle Scholar
  51. 51.
    D. Ping, Y. Yamabe-Mitarai, C. Cui, F. Yin, M. Choudhry, Appl Phys Lett, 2008, vol. 93, pp. 151911.CrossRefGoogle Scholar
  52. 52.
    C. Wei, Y. Shanshan, L. Ruolei, S. Qiaoyan, X. Lin, S. Jun, Rare Metal Mat Eng, 2015, vol. 44, pp. 1601-1606.CrossRefGoogle Scholar
  53. 53.
    Y. Ren, F. Wang, S. Wang, C. Tan, X. Yu, J. Jiang, H. Cai, Mater Sci Eng: A, 2013, vol. 562, pp. 137-143.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations