Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2310–2321 | Cite as

Microstructural, Mechanical, and Damping Properties of a Cu-Based Shape Memory Alloy Refined by an In Situ LaB6/Al Inoculant

  • Xiaojing liu
  • Qingzhou WangEmail author
  • Sergey Yu. Kondrat’ev
  • Puguang Ji
  • Fuxing Yin
  • Chunxiang Cui
  • Gangling Hao


In order to solve the problem of intergranular brittle fracture of Cu-based shape memory alloys (SMAs) and further improve their mechanical properties, an in situ LaB6/Al inoculant was designed and used for the first time to significantly refine the grains of a CuAlMn SMA. Through phase analysis, microscopic observation, and theoretical calculation, it was confirmed that the LaB6 particles in the inoculant could act as efficient heterogeneous nuclei of the CuAlMn SMA. The evolution of microstructures with grain refinement and its influence on the mechanical and damping properties were also investigated. It was found that with the decrease of the average grain size, the martensite structure of the CuAlMn SMA was also dramatically refined. Consequently, because of the increase of phase interface density, the damping capacity of the CuAlMn SMA was improved and the elongation, tensile strength, and yield strength were also significantly improved due to the principle of fine grain strengthening. After hot rolling, the average grain size of the refined CuAlMn SMA increased slightly, while the damping, tensile strength, and elongation were further improved, which has been ascribed to the elimination of casting defects and the increase of density.



This work was supported by the National Natural Science Foundation of China (Grant No. 51661032), the Natural Science Foundation of Hebei (Grant No. E2017202091), the Scientific Research Project of High Level Talents in Hebei Colleges and Universities (Grant No. GCC2014012), and the Key Project of Science and Technology Research of Higher Education in Hebei Province (Grant No. ZD2016032).


  1. 1.
    N. Koeda, T. Omori, Y. Sutou, H. Suzuki, M. Wakita, R. Kainuma, and K. Ishida: Mater. Trans., 2005, vol. 46, pp. 118–22.CrossRefGoogle Scholar
  2. 2.
    B. Kaouache, S. Berveiller, K. Inal, A. Eberhardt, and E. Patoor: Mater. Sci. Eng. A, 2004, vol. 378, pp. 232–37.CrossRefGoogle Scholar
  3. 3.
    S.K. Vajpai, R.K. Dube, P. Chatterjee, and S. Sangal: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2484–99.CrossRefGoogle Scholar
  4. 4.
    Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma, and K. Ishida: Acta Mater., 2005, vol. 53, pp. 4121–33.CrossRefGoogle Scholar
  5. 5.
    J.P. Oliveira, Z. Zeng, C. Andrei, F.M. Braz-Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori, and N. Zhou: Mater. Des., 2017, vol. 128, pp. 166–75.CrossRefGoogle Scholar
  6. 6.
    J.S. Luo, T. Voisin, J.P. Monchoux, and A. Couret: Intermetallics, 2013, vol. 36, pp. 12–20.CrossRefGoogle Scholar
  7. 7.
    S.N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, and M.N. Mohammed: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5242–55.CrossRefGoogle Scholar
  8. 8.
    V. Sampath: Mater. Manuf. Proc., 2006, vol. 21, pp. 789–95.CrossRefGoogle Scholar
  9. 9.
    Y. Sutou, T. Omori, N. Koeda, R. Kainuma, and K. Ishida: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 743–46.CrossRefGoogle Scholar
  10. 10.
    Y. Sutou, T. Omori, T. Okamoto, R. Kainuma, and K. Ishida: J. Phys., 2001, vol. 11, pp. 185–90.Google Scholar
  11. 11.
    S.Y. Yang, F. Zhang, J.L. Wu, Y. Lu, Z. Shi, C.P. Wang, and X.J. Liu: Mater. Des., 2017, vol. 115, pp. 17–25.CrossRefGoogle Scholar
  12. 12.
    C.A. Canbay, S. Ozgen, and Z.K. Genc: Appl. Phys. A, 2014, vol. 117, pp. 767–71.CrossRefGoogle Scholar
  13. 13.
    C.A. Canbay, Z.K. Genc, and M. Sekerci: Appl. Phys. A, 2014, vol. 115, pp. 371–77.CrossRefGoogle Scholar
  14. 14.
    J.L. Liu, H.Y. Huang, and J.X. Xie: Mater. Des., 2015, vol. 85, pp. 211–20.CrossRefGoogle Scholar
  15. 15.
    J.P. Oliveira, B. Panton, Z. Zeng, T. Omori, Y. Zhou, R.M. Miranda, and F.M. Braz Fernandes: Mater. Des., 2016, vol. 90, pp. 122–28.Google Scholar
  16. 16.
    J.P. Oliveira, Z. Zeng, T. Omori, N. Zhou, R.M. Miranda, and F.M. Braz Fernandes: Mater. Des., 2016, vol. 98, pp. 280–84.Google Scholar
  17. 17.
    N. Li, X.J. Liu, Q.Z. Wang, C.X. Cui, F.X. Yin, X.W. Ji, and Z.X. Jiao: Mater. Des., 2017, vol. 127, pp. 97–105.CrossRefGoogle Scholar
  18. 18.
    Q.Z. Wang, F.S. Han, and Q. Wang: Phys. Status Solidi (a), 2004, vol. 201, pp. 2910–14.CrossRefGoogle Scholar
  19. 19.
    B. Gencturk, Y. Araki, T. Kusama, T. Omori, R. Kainuma, and F. Medina: Constr. Build. Mater., 2014, vol. 53, pp. 555–60.CrossRefGoogle Scholar
  20. 20.
    Z. Xiao, M. Fang, Z. Li, T. Xiao, and Q. Lei: Mater. Des., 2014, vol. 58, pp. 451–56.CrossRefGoogle Scholar
  21. 21.
    S. Xu, H.Y Huang, J.X. Xie, Y. Kimura, X, Xu, T. Omori, and R. Kainuma: Metals, 2017, vol. 7, pp. 141–48.Google Scholar
  22. 22.
    J. Chen, Z. Li, and Y.Y. Zhao: J. Alloys Compd., 2009, vol. 480, pp. 481–84.CrossRefGoogle Scholar
  23. 23.
    B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.CrossRefGoogle Scholar
  24. 24.
    X.M. Pan, X.F. Bian, J.Y. Qing, and W.M. Wang: Acta Phys. Chim. Sin., 2001, vol. 17, pp. 708–12 (in Chinese).Google Scholar
  25. 25.
    M. Easton and D. Stjohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613–23.CrossRefGoogle Scholar
  26. 26.
    M. Easton and D. Stjohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1625–33.CrossRefGoogle Scholar
  27. 27.
    X.L. Lu, F. Chen, W.S. Li, and Y.F. Zheng: J. Alloys Compds., 2009, vol. 480, pp. 608–11.CrossRefGoogle Scholar
  28. 28.
    C.A. Hsu, W.H. Wang, Y.F. Hsu, and W.P. Rehbach: J. Alloys Compds., 2009, vol. 474, pp. 455–62.CrossRefGoogle Scholar
  29. 29.
    P. Zhang, A.B. Ma, S. Lu, P.H. Lin, J.H. Jiang, H. Ma, and C.L. Chu: Mater. Lett., 2009, vol. 63, pp. 2676–79.CrossRefGoogle Scholar
  30. 30.
    I.G. Ritchie and Z.L. Pan: Metall. Trans. A, 1991, vol. 22A, pp. 607–16.CrossRefGoogle Scholar
  31. 31.
    J. Chen, Z. Li, and Y.Y. Zhao: J. Alloys Compds., 2009, vol. 480, pp. 481–84.CrossRefGoogle Scholar
  32. 32.
    Q.Z. Wang, D.M. Lu, C.X. Cui, W.J. Liu, M. Xu, and J. Yang: Mater. Sci. Eng. A, 2014, vol. 615, pp. 278–82.CrossRefGoogle Scholar
  33. 33.
    E.M. Mazzer, C.S. Kiminami, C. Bolfarini, R.D. Cava, W.J. Botta, P. Gargarella, F. Audebert, and M. Galano: Mater. Sci. Eng. A, 2016, vol. 663, pp. 64–68.CrossRefGoogle Scholar
  34. 34.
    B.L. Liu, Z.L. Liu, X.Q. Liu, W.J. Wang, and L.H. Wang: J. Alloys Compd., 2013, vol. 578, pp. 373–79.CrossRefGoogle Scholar
  35. 35.
    Y.N. Wang, W.Y. Sun, X.H. Chen, H.M. Shen, and B.S. Lu: Phys. Status Solidi (a), 1987, vol. 102, pp. 279–85.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xiaojing liu
    • 1
  • Qingzhou Wang
    • 1
    Email author
  • Sergey Yu. Kondrat’ev
    • 2
  • Puguang Ji
    • 1
  • Fuxing Yin
    • 1
  • Chunxiang Cui
    • 1
  • Gangling Hao
    • 3
  1. 1.Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and EngineeringHebei University of TechnologyTianjinP.R. China
  2. 2.Peter the Great St. Petersburg Polytechnic UniversityPetersburgRussia
  3. 3.School of Physics and Electronic InformationYanan UniversityYananP.R. China

Personalised recommendations