Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2061–2065 | Cite as

Structural Study of Novel Nanocrystalline fcc Ti-Ta-Sn Alloy

  • C. AguilarEmail author
  • E. Pio
  • A. Medina
  • R. V. Mangalaraja
  • C. Salvo
  • I. Alfonso
  • D. Guzmán
  • L. Bejar
Communication
  • 87 Downloads

Abstract

This report discussed the microstructural features of fcc Ti-13Ta-6Sn alloy synthesized using mechanical ball milling at 100 hours. The X-ray diffraction profile analysis was discussed using Rietveld, modified Williamson-Hall and Warren-Averbach methods. Two important conditions, high plastic deformation and nanocrystalline size range to satisfy the stable face-centered cubic (fcc) phase were achieved. The X-ray diffraction profile analysis and TEM images proved that the crystallite size and dislocation density of 6.6 nm and 1016 m−2, respectively.

Notes

The authors would like to acknowledge financial support from FONDECYT n° 1161444 and FONDEQUIP/EQM n° 140095.

References

  1. 1.
    1 P. Bhaskar, A. Dasgupta, V.S. Sarma, U.K. Mudali, and S. Saroja: Mater. Sci. Eng. A, 2014, vol. 616, pp. 71–7.CrossRefGoogle Scholar
  2. 2.
    F. Rajabi, A. ZareiHanzaki, H.R. Abedi, and E. Farghadany: J. Alloys Compd., 2017, vol. 725, pp. 23–31.CrossRefGoogle Scholar
  3. 3.
    3 A. Biesiekierski, J. Wang, M.A. Gepreel, and C. Wen: Acta Biomater., 2012, vol. 8, pp. 1661–9.CrossRefGoogle Scholar
  4. 4.
    4 Q. Yu, J. Kacher, C. Gammer, R. Traylor, A. Samanta, Z. Yang, and A.M. Minor: Scr. Mater., 2017, vol. 140, pp. 9–12.CrossRefGoogle Scholar
  5. 5.
    P. Chatterjee and S.P. SenGupta: Appl. Surf. Sci., 2001, vol. 182, pp. 372–376.CrossRefGoogle Scholar
  6. 6.
    T.N. Prasanthi, C. Sudha, D. Ravikirana, and S. Saroja: Mater. Charact., 2016, vol. 116, pp. 24–32.CrossRefGoogle Scholar
  7. 7.
    7 R. Jing, C.Y. Liu, M.Z. Ma, and R.P. Liu: J. Alloys Compd., 2013, vol. 552, pp. 202–7.CrossRefGoogle Scholar
  8. 8.
    8 S. Xiong, W. Qi, B. Huang, M. Wang, Z. Li, and S. Liang: J. Phys. Chem. C, 2012, vol. 116, pp. 237–41.CrossRefGoogle Scholar
  9. 9.
    9 L. Chang, C.Y. Zhou, X.M. Pan, and X.H. He: Mater. Des., 2017, vol. 134, pp. 320–30.CrossRefGoogle Scholar
  10. 10.
    10 D.L. Zhang and D.Y. Ying: Mater. Lett., 2001, vol. 50, pp. 149–53.CrossRefGoogle Scholar
  11. 11.
    11 H.C. Wu, A. Kumar, J. Wang, X.F. Bi, C.N. Tomé, Z. Zhang, and S.X. Mao: Sci. Rep., 2016, vol. 6, p. 24370.CrossRefGoogle Scholar
  12. 12.
    12 G. Will: Powder Diffraction: The Rietveld Method and the Two-Stage Method, Springer-Verlag Berlin Heidelberg, 2006.Google Scholar
  13. 13.
    13 C. Aguilar, D. Guzman, and C. Iglesias: Rev. Latinoam. Metal. y Mater., 2013, vol. 33, pp. 15–32.Google Scholar
  14. 14.
    14 L. Lutterotti and P. Scardi: J. Appl. Crystallogr., 1990, vol. 23, pp. 246–52.CrossRefGoogle Scholar
  15. 15.
    15 P. Scardi, L. Lutterotti, and P. Maistrelli: Powder Diffr., 1994, vol. 9, pp. 180–6.CrossRefGoogle Scholar
  16. 16.
    16 N.C. Popa: J. Appl. Crystallogr., 1998, vol. 31, pp. 176–80.CrossRefGoogle Scholar
  17. 17.
    17 A.S. Bolokang, M.J. Phasha, D.E. Motaung, F.R. Cummings, T.F.G. Muller, and C.J. Arendse: Mater. Lett., 2014, vol. 132, pp. 157–61.CrossRefGoogle Scholar
  18. 18.
    18 T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–5.CrossRefGoogle Scholar
  19. 19.
    M. Wilkens: 1987, vol. 57, pp. 157–70.Google Scholar
  20. 20.
    I. Dragomir and T. Unga: J. Appl. Crystallogr 1999, vol. 32, pp. 992–1002.CrossRefGoogle Scholar
  21. 21.
    21 A. Aguayo, G. Murrieta, and R. de Coss: Phys. Rev. B, 2002, vol. 65, p. 092106.CrossRefGoogle Scholar
  22. 22.
    22 G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, p. 22.CrossRefGoogle Scholar
  23. 23.
    E.J. Mittemeijer and P. Scardi: Diffraction Analysis of the Microstructure of Materials. Springer, Berlin, 2004.CrossRefGoogle Scholar
  24. 24.
    24 T. Ungár: Scr. Mater., 2004, vol. 51, pp. 777–81.CrossRefGoogle Scholar
  25. 25.
    25 C.E. Krill and R. Birringer: Philos. Mag. A, 1998, vol. 77, pp. 621–40.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • C. Aguilar
    • 1
    Email author
  • E. Pio
    • 1
  • A. Medina
    • 2
  • R. V. Mangalaraja
    • 3
  • C. Salvo
    • 3
  • I. Alfonso
    • 4
  • D. Guzmán
    • 5
  • L. Bejar
    • 2
  1. 1.Departamento de Ingeniería Metalúrgica y MaterialesUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Instituto de Investigaciones en Metalurgia y MaterialesUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  3. 3.Laboratorio de Cerámicos Avanzados y Nanotecnologia, Departamento de Ingeniería de MaterialesUniversidad de ConcepciónConcepciónChile
  4. 4.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  5. 5.Departamento de MetalurgiaUniversidad de AtacamaCopiapóChile

Personalised recommendations