# Constrained Dendritic Growth and Solute Concentration Effects in Rapidly Solidified Co-Cr Alloys

- 71 Downloads

## Abstract

Growth temperature and dendrite tip radius equations were employed in this work in order to predict the experimental conditions under which a Co-Cr alloy was produced having a single γ-phase microstructure free from interdendritic segregation. The outcome of these predictions indicated that in Co alloys containing 20 to 25 wt pct Cr, single γ-phase dendritic microstructures are achieved independently of the implemented solidification growth velocities. Moreover, these alloys are found to be essentially free from interdendritic segregation. Co alloys containing 30 to 35 wt pct Cr exhibit both the γ-phase and the eutectic constituent when solidification rates (*V*) are below 0.1 and 0.5 mm/s, respectively. Alternatively, the eutectic constituent is suppressed when the solidification growth velocities exceed these values. In particular, it is found that a single-phase microstructure can be achieved when the solidification growth rates exceed the transition velocity between constitutional supercooling and the absolute stability conditions.

## Notes

### Acknowledgments

The authors gratefully acknowledge the technical support from A. Tejeda and C. Flores-Morales and the financial support from UNAM/PAPIIT IT100316.

## References

- 1.M. Niinomi, T. Narushima and M. Nakai:
*Advances in Metallic Biomaterials*, Springer, Berlin, Heidelberg, 2015.Google Scholar - 2.L. Ren and K. Yang:
*J. Mater. Sci. Technol.*, 2013, vol. 29, pp. 1005–10.CrossRefGoogle Scholar - 3.T. Hanawa:
*Mater. Sci. Eng. A*, 1999, vol. 267, pp. 260–66.CrossRefGoogle Scholar - 4.M. Niinomi:
*Int. J. Fatigue*, 2007, vol. 29, pp. 992–1000.CrossRefGoogle Scholar - 5.R.M. Berlin, L.J. Gustavson, and K.K. Wang: in:
*Cobalt Base Alloys for Biomedical Applications*, J.A. Disegi, R.L. Kennedy, and R. Pilliar, eds., ASTM International, West Conshohocken, PA, USA, 1999, pp. 62–70.Google Scholar - 6.R. Kaiser, K. Williamson, C. O’Brien and D. J. Browne:
*Metall. Mater. Trans. A*, 2013, vol. 44, pp. 5333–42.CrossRefGoogle Scholar - 7.M. Gómez, H. Mancha, A. Salinas, J. L. Rodríguez, J. Escobedo, M. Castro and M. Méndez:
*J. Biomed. Mater. Res. A*, 1997, vol. 34, pp. 157–63.CrossRefGoogle Scholar - 8.M. Caudillo, M. Herrera–Trejo, M. R. Castro, E. Ramírez, C. R. González and J. I. Juárez:
*J. Biomed. Mater. Res. A*, 2002, vol. 59, pp. 378–85.CrossRefGoogle Scholar - 9.T. Narushima, Sh. Mineta, Y. Kurihara and K. Ueda:
*JOM*, 2013, vol. 65, pp. 489–504.CrossRefGoogle Scholar - 10.R. Rosenthal, B. R. Cardoso, I. S. Bott, R. P. R. Paranhos and E. A. Carvalho:
*J. Mater. Sci.*, 2010, vol. 45, pp. 4021–28.CrossRefGoogle Scholar - 11.J. V. Giacchi, C. N. Morando, O. Formaro and H. A. Palacio:
*Mater. Charact.*, 2011, vol. 62, pp. 53–61.CrossRefGoogle Scholar - 12.C. M. Agrawal:
*JOM*, 1998, vol. 50, pp. 31–5.CrossRefGoogle Scholar - 13.J. J. Jacobs, A. K. Skipor, P. A. Campbell, N. J. Hallab, R. M. Urban and H. C. Amstutz:
*J. Arthroplasty*, 2004, vol. 19, pp. 59–65.CrossRefGoogle Scholar - 14.S. Weiss and B. Mitevski:
*Materials*, 2015, vol. 8, 2467–79.CrossRefGoogle Scholar - 15.S. Diaz-Rodriguez, P. Chevallier and D. Mantovani:
*Plasma Process Polym.*, 2018, vol. 15, pp. 1–6.CrossRefGoogle Scholar - 16.M. Niinomi:
*Metall. Mater. Trans. A*, 2002, vol. 33, pp. 477–86.CrossRefGoogle Scholar - 17.N. Sato, M. Kinbara, T. Kuroishi, K. Kimura, Y. Iwakura, H. Ohtsu, S. Sugawara and Y. Endo:
*Clin. Exp. Allergy*, 2007, vol. 37, pp. 743–51.CrossRefGoogle Scholar - 18.Sh.-H. Sun, Y. Koizumi, Sh. Kurosu, Y.-P. Li, H. Matsumoto and A. Chiba:
*Acta Mater.*, 2014, vol. 64, pp. 154–68.CrossRefGoogle Scholar - 19.A. L. Ramirez-Ledesma, E. Lopez-Molina, H. F. Lopez and J. A. Juarez-Islas:
*Acta Mater.*, 2016, vol. 111, pp. 138–47.CrossRefGoogle Scholar - 20.A.L. Ramirez Ledesma, H. Lopez, and J.A. Juarez-Islas:
*Metals*, 2016, vol. 6, pp. 1–17.Google Scholar - 21.R. V. Marrey, R. Burgermeister, R. B. Grishaber and R. O. Ritchie:
*Biomaterials*, 2006, vol. 27, pp. 1988–2000.CrossRefGoogle Scholar - 22.G. Mani, M. D. Feldman, D. Patel and C. M. Agrawal:
*Biomaterials*, 2007, vol. 28, pp. 1689–1710.CrossRefGoogle Scholar - 23.C. González, J. Genesca, O. Álvarez and J. A. Juarez-Islas:
*Metall. Mater. Trans. A*, 2003, vol. 34, pp. 2991–97.CrossRefGoogle Scholar - 24.W. Kurz and D. J. Fisher:
*Fundamentals of Solidification*, Trans. Tech. Publications, Switzerland, Germany, 1984.Google Scholar - 25.J. A. Juarez-Islas:
*J. Mater. Sci.*, 1991, vol. 26, pp. 5004–12.CrossRefGoogle Scholar - 26.K. A. Jackson and D. Hunt:
*T. Metall. Soc. AIME*, 1966, vol. 236, pp. 1129–42.Google Scholar - 27.W. Kurz, B. Giovanola and R. Trivedi:
*Acta Metall.*, 1986, vol. 34, pp. 823–30.CrossRefGoogle Scholar - 28.M. Abramowitz and I.A. Stegun, eds.,
*Handbook of Mathematical Functions*, Dover, New York, 1968.Google Scholar - 29.L. Xin, L. Yanmin, W. Meng, F. Liping, C. Jing and H. Weidong:
*Sci. China Ser. E*, 2003, vol. 46, pp. 475–89.CrossRefGoogle Scholar - 30.S. R. Levine:
*Metall. Mater. Trans. A*, 1978, vol. 9, pp. 1237–50.CrossRefGoogle Scholar - 31.K. Ishida and T. Nishizawa:
*Bull. Alloy Phase Diagr.*, 1990, vol. 11, pp. 357–70.CrossRefGoogle Scholar - 32.B. Wei, D. M. Herlach, F. Sommer and W. Kurz:
*Mat. Sci. Eng. A*, 1993, vol. 173, pp. 357–61.CrossRefGoogle Scholar - 33.A. Mani, Salinas-Rodriguez, and H. F. Lopez:
*Mater. Sci. Eng., A*, 2011, vol. 528, pp. 3037–43.Google Scholar - 34.S.-H. Lee, E. Takahashi, N. Nomura, and A. Chiba:
*Mater. Trans. JIM*, 2005, vol. 46, pp. 1790–93.Google Scholar - 35.B. Paul, R. Kapoor, J. K. Chakravartty, A. C. Bidaye, I. G. Sharma and A K. Suri:
*Scripta Mater.*, 2009, vol. 60, pp. 104–7.CrossRefGoogle Scholar - 36.J. S. Langer and H. Müller-Krumbhaar:
*Acta Metall.*, 1978, vol. 26, pp. 1681–87.CrossRefGoogle Scholar - 37.W. W. Müllins and R. F. Sekerka:
*J. Appl. Phys.*, 1964, vol. 35, pp. 444–51.CrossRefGoogle Scholar - 38.W. Kurz and D. J. Fisher:
*Acta Metall.*, 1981, vol. 29, pp. 11–20.CrossRefGoogle Scholar