Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2302–2309 | Cite as

Nanoindentation Investigation of Ti/Fe Bimetallic Plate Welded by Vanadium Filler

  • Qiaoling ChuEmail author
  • Min Zhang
  • Jihong Li
  • Fuxue Yan
  • Cheng Yan
Article
  • 58 Downloads

Abstract

This article presents a systematic investigation of microstructures and mechanical properties of Ti/Fe bimetallic plates butt welded using vanadium (V) filler. It is found that the Ti/V/Fe interface is featured by dendrite structures consisting of β-Ti, FeTi, Fe2Ti, and α-Ti phases, with a hardness ranging from 5.5 to 16.25 GPa. V weld metal (WM) mainly consists of V solid solution phase with some α-Ti precipitating along the grain boundaries. A series of intermetallics, e.g., σ-FeV and Fe2Ti, are formed at the V/Fe WM interface. V WM has relatively uniform hardness (2 to 5 GPa), but hardness fluctuation is observed at the V/Fe WM interface, from 2 to 16.3 GPa. Cracks tend to initiate and propagate along the regions rich in σ-FeV and Fe2Ti. The reheated zone (V/Fe WM) by subsequent welding passes may promote the formation of σ-FeV, responsible for the cracking. Based on the Fe-Ti-V ternary phase diagram, a schematic model is established to predict the phase transformation in these welds.

Notes

Acknowledgments

This work was supported by the Startup Fund for Doctors of Xi’an University of Technology (Grant No. 101-451118006), Australian Research Council Discovery Project (Grant No. DP180101955), and National Natural Science Foundation of China (Grant No. 51575251). The data reported in this article were obtained at the Central Analytical Research Facility (CARF) with the technical assistance of Mr. Tony Raftery and Dr. Dilini G.D. Galpaya, Institute for Future Environments (QUT).

References

  1. 1.
    M. Gloc, M. Wachowski, T. Plocinski, and K.J. Kurzydlowski: J. Alloys Compd., 2016, vol. 671, pp. 446–51.CrossRefGoogle Scholar
  2. 2.
    M.X. Xie, L.J. Zhang, G.F. Zhang, J.X. Zhang, Z.Y. Bi, and P.C. Li: Mater. Des., 2015, vol. 87, pp. 181–97.CrossRefGoogle Scholar
  3. 3.
    P. Manikandan, K. Hokamoto, M. Fujita, K. Raghukandan, and R. Tomoshige: J. Mater. Process. Technol., 2008, vol. 195, pp. 232–40.CrossRefGoogle Scholar
  4. 4.
    B.F. Wang and Y. Yang: Mater. Sci. Eng. A, 2007, vols. 452–453, pp. 273–77.CrossRefGoogle Scholar
  5. 5.
    S.A.A.A. Mousavi and P.F. Sartangi: Mater. Sci. Eng. A, 2008, vol. 494, pp. 329–36.CrossRefGoogle Scholar
  6. 6.
    J. Song, A. Kostka, M. Veehmayer, and D. Raabe: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2641–47.CrossRefGoogle Scholar
  7. 7.
    S. Kundu, M. Ghosh, and S. Chatterjee: Mater. Sci. Eng. A, 2006, vol. 428, pp. 18–23.CrossRefGoogle Scholar
  8. 8.
    J.S. Liao, N. Yamamoto, H. Liu, and K. Nakata: Mater. Lett., 2010, vol. 64, pp. 2317–20.CrossRefGoogle Scholar
  9. 9.
    I. Tomashchuk, P. Sallamand, H. Andrzejewski, and D. Grevey: Intermetallics, 2011, vol. 19, pp. 1466–73.CrossRefGoogle Scholar
  10. 10.
    S. Kundu and S. Chatterjee: Mater. Sci. Eng. A, 2006, vol. 425, pp. 107–13.CrossRefGoogle Scholar
  11. 11.
    M.K. Lee, J.G. Lee, Y.H. Choi, D.W. Kim, C.K. Rhee, Y.B. Lee, and S.J. Hong: Mater. Lett., 2010, vol. 64, pp. 1105–08.CrossRefGoogle Scholar
  12. 12.
    Q.L. Chu, R.X. Bai, M. Zhang, J.H. Li, Z.K. Lei, N. Hu, J.M. Bell, and C. Yan: Mater. Charact., 2017, vol. 132, pp. 330–37.CrossRefGoogle Scholar
  13. 13.
    Q.L. Chu, M. Zhang, J.H. Li, Q.Y. Fan, W.W. Xie, and Z.Y. Bi: J. Mater. Process. Technol., 2015, vol. 225, pp. 67–76.CrossRefGoogle Scholar
  14. 14.
    J.L. Murray: ASM Handbook, vol. 3, ASM International, Materials Park, OH, 1992.Google Scholar
  15. 15.
    H. Okamoto: J. Phase Equilib., 2006, vol. 27, pp. 542–43.CrossRefGoogle Scholar
  16. 16.
    V. Raghavan: J. Phase Equilib., 2011, vol. 32, pp. 381–82.CrossRefGoogle Scholar
  17. 17.
    S. Nogami, J. Miyazaki, A. Hasegawa, T. Nagasaka, and T. Muroga: J. Nucl. Mater., 2013, vol. 442, pp. S562–S566.CrossRefGoogle Scholar
  18. 18.
    Y. Ustinovshikov, B. Pushkarev, and I. Sapegina: J. Alloys Compd., 2005, vol. 398, pp. 133–38.CrossRefGoogle Scholar
  19. 19.
    R.J. Kurtz, M.L. Hamilton, and H. Li: J. Nucl. Mater., 1998, vols. 258–263, pp. 1375–79.CrossRefGoogle Scholar
  20. 20.
    K. Fukumoto, T. Morimura, T. Tanaka, A. Kimura, K. Abe, H. Takahashi, and H. Matsui: J. Nucl. Mater., 1996, vol. 239, pp. 170–75.CrossRefGoogle Scholar
  21. 21.
    D.H. Xie, K.Z. Liu, X.B. Xian, L.S. Ye, and Y.P. Chen: Rare Met. Mater. Eng., 2008, vol. 37 (9), pp. 1566–69.CrossRefGoogle Scholar
  22. 22.
    C. Liu, J.W. Yang, Y.F. Shi, Q. Fu, and Y. Zhao: J. Mater. Process. Technol., 2018, vol. 256, pp. 239–46.CrossRefGoogle Scholar
  23. 23.
    C.P. Guo, G.R. Li, X. Zheng, and Z.M. Du: CALPHAD, 2012, vol. 38. pp. 155–60.CrossRefGoogle Scholar
  24. 24.
    B. Massicot, J.M. Joubert, and M. Latroche: Int. J. Mater. Res., 2010, vol. 101, pp. 1414–23.CrossRefGoogle Scholar
  25. 25.
    F.M. Wei and H.M. Flower: Mater. Sci. Technol., 1989, vol. 5 (12), pp. 1172–77.CrossRefGoogle Scholar
  26. 26.
    V. Raghavan: J. Phase Equilib., 2013, vol. 34, pp. 230–43.CrossRefGoogle Scholar
  27. 27.
    G. Effenberg and S. Ilyenko, eds., Springer, 2009, vol. 11, pp. 678–94.Google Scholar
  28. 28.
    X.L. Wang, X.M. Wang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2016, vol. 649, pp. 282–92.CrossRefGoogle Scholar
  29. 29.
    X.L. Wang, Y.R. Nan, Z.J. Xie, Y.T. Tsai, J.R. Yang, and C.J. Shang: Mater. Sci. Eng. A, 2017, vol. 702, pp. 196–205.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Qiaoling Chu
    • 1
    • 2
    Email author
  • Min Zhang
    • 1
  • Jihong Li
    • 1
  • Fuxue Yan
    • 1
  • Cheng Yan
    • 2
  1. 1.College of Materials Science and EngineeringXi’an University of TechnologyXi’anChina
  2. 2.School of Chemistry, Physics and Mechanical Engineering, Science and Engineering FacultyQueensland University of Technology (QUT)BrisbaneAustralia

Personalised recommendations