Advertisement

Quantitative Study of Microstructure-Dependent Thermal Conductivity in Mg-4Ce-xAl-0.5Mn Alloys

  • Chuangye Su
  • Dejiang LiEmail author
  • Alan A. Luo
  • Renhai Shi
  • Xiaoqin ZengEmail author
Article
  • 3 Downloads

Abstract

The effect of microstructure on thermal conductivity was investigated for Mg-4Ce-xAl-0.5Mn (x = 0 to 6 wt pct) alloys produced by gravity casting and high-pressure die casting. The solidification microstructure of the alloys was quantitatively studied using CALculation of PHase Diagrams (CALPHAD) modeling and experimental characterization. The lattice volume of Mg solid solution was measured via X-ray diffraction (XRD) method. The results show that the thermal conductivity is influenced mostly by lattice volume, and, to a lesser extent, by intermetallic compounds. Also, thermal conductivity has a strong negative correlation with the concentration of total solute atoms. When the addition of Al is less than 3 wt pct, the thermal conductivity of die casting alloys with higher cooling rate and solute concentration is lower than that of gravity casting alloys. However, their thermal conductivities tend to be equal when the Al addition exceeds about 3 wt pct, as the concentration of solute atom is approaching the solid solubility limit. Two methods (structural model and Wiedemann–Franz law) were proposed and modified to predict their thermal conductivities, respectively. Both can provide a good prediction of thermal conductivity values.

Notes

Acknowledgments

The authors acknowledge the funding for the National Key R&D Program (No. 2016YFB0301002) supported by the Ministry of Science and Technology of China and the Major Science and Technology projects in Qinghai province (2018-GX-A1). This work was co-funded by the National Natural Science Foundation of China (Nos. 51301107, 51601111). C. Su would also like to express his gratitude to China Scholarship Council for supporting his stay at The Ohio State University as a visiting scholar. D. Li acknowledges the financial support received from Shanghai Jiao Tong University through SMC-Young scholar program.

References

  1. 1.
    B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.CrossRefGoogle Scholar
  2. 2.
    M.K. Kulekci: Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851–65.CrossRefGoogle Scholar
  3. 3.
    X. Shi, D. Li, A.A. Luo, B. Hu, L. Li, X. Zeng, and W. Ding: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4788–99.CrossRefGoogle Scholar
  4. 4.
    A. Rudajevová, M. Staněk, and P. Lukáč: Mater. Sci. Eng. A, 2003, vol. 341, pp. 152–57.CrossRefGoogle Scholar
  5. 5.
    A. Rudajevová, J. Kiehn, K.U. Kainer, B.L. Mordike, and P. Lukáč: Scr. Mater., 1999, vol. 40, pp. 57–62.CrossRefGoogle Scholar
  6. 6.
    C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding, and S. Xiao: Mater. Des., 2015, vol. 84, pp. 48–52.CrossRefGoogle Scholar
  7. 7.
    T. Ying, H. Chi, M. Zheng, Z. Li, and C. Uher: Acta Mater., 2014, vol. 80, pp. 288–95.CrossRefGoogle Scholar
  8. 8.
    C. Su, D. Li, A.A. Luo, T. Ying, and X. Zeng: J. Alloys Compd., 2018, vol. 747, pp. 431–37.CrossRefGoogle Scholar
  9. 9.
    T.B. Massalski and H. Okamoto: Binary Alloys Phase Diagrams, 2nd ed., Springer, Berlin, 1990, pp. 574–84.Google Scholar
  10. 10.
    J. Zhang, Z. Leng, M. Zhang, J. Meng, and R. Wu: J. Alloys Compd., 2011, vol. 509, pp. 1069–78.CrossRefGoogle Scholar
  11. 11.
    T. Rzychoń, A. Kiełbus, J. Cwajna, and J. Mizera: Mater. Charact., 2009, vol. 60, pp. 1107–13.CrossRefGoogle Scholar
  12. 12.
    S. Zhu, T. Abbott, M. Gibson, J. Nie, and M. Easton: Mater. Sci. Eng. A, 2016, vol. 656, pp. 343–38.CrossRefGoogle Scholar
  13. 13.
    J.F. Wang, J. K. Carson, M. F. North, and D. J. Cleland: Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 3075–83.CrossRefGoogle Scholar
  14. 14.
    R.C. Progelhof, J.L. Throne, and R.R. Reutsch: Polym. Eng. Sci., 1976, vol. 16, pp. 615–25.CrossRefGoogle Scholar
  15. 15.
    E. Behrens: J. Compos. Mater., 1968, vol. 2, pp. 2–17.CrossRefGoogle Scholar
  16. 16.
    T.H. Bauer: Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 4181–91.CrossRefGoogle Scholar
  17. 17.
    J. K. Carson and J. P. Sekhon: Int. Commun. Heat Mass Transfer, 2010, vol. 37, pp. 1226–29.CrossRefGoogle Scholar
  18. 18.
    F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, and P.J. Uggowitzer: Mater. Sci. Eng. A, 2013, vol. 560, pp. 481–91.CrossRefGoogle Scholar
  19. 19.
    J.K. Chen, H.Y. Hung, F. Wang, and K. Tang: J. Mater. Sci., 2015, vol. 50, pp. 5630–39.CrossRefGoogle Scholar
  20. 20.
    Powell RW: Int. J. Heat Mass Transfer, 1965, vol. 8, pp. 1033–45.CrossRefGoogle Scholar
  21. 21.
    C. Uher: Thermal ConductivityTheory, Properties and Applications, Kluwer Academic/Plenum Publishers, New York, 2004, pp. 21–91.Google Scholar
  22. 22.
    Y.S. Touloukiana and E.H. Buyco: Thermophysical Properties of Matter, Plenum Press, New York, 1970, pp. 124–127.Google Scholar
  23. 23.
    A. Lindemann, J. Schmidt, M. Todte, and T. Zeuner: Thermochim. Acta, 2002, vol. 382, pp. 269–75.CrossRefGoogle Scholar
  24. 24.
    Alan A. Luo: CALPHAD, 2015, vol. 50, pp. 6–22.CrossRefGoogle Scholar
  25. 25.
    Renhai Shi and Alan A. Luo: CALPHAD, 2018, vol. 62, pp. 1–17.CrossRefGoogle Scholar
  26. 26.
    J. Wang, R. Liao, L. Wang, Y. Wu, Z. Cao, and L. Wang: J. Alloys Compd., 2009, vol. 477, pp. 341–45.CrossRefGoogle Scholar
  27. 27.
    W. Sun, X. Shi, E. Cinkilic, and A. A. Luo: J. Mater. Sci., 2016, vol. 51, pp. 6287–94.CrossRefGoogle Scholar
  28. 28.
    J. Yang: Thermal Conductivity—Theory, Properties and Applications, Kluwer Academic/Plenum Publishers, New York, 2004, pp. 1–20.Google Scholar
  29. 29.
    J. Peng, L. Zhong, Y. Wang, Y. Lu, and F. Pan: Mater. Des., 2015, vol. 87, pp. 914–19.CrossRefGoogle Scholar
  30. 30.
    P. G. Klemens and R. K. Williams: Int. Met. Rev., 1986, vol. 31, pp. 197–215.CrossRefGoogle Scholar
  31. 31.
    J. Yuan, K. Zhang, X. Zhang, X. Li, T. Li, Y. Li, M. Ma, and G. Shi: J. Alloys Compd., 2013, vol. 578, pp. 32–36.CrossRefGoogle Scholar
  32. 32.
    A.R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk: Metall. Mater. Trans., 2009, vol. 40, pp. 2435–2446.CrossRefGoogle Scholar
  33. 33.
    M.J. Aziz: J. Appl. Phys., 1982, vol. 53, pp. 1158–68.CrossRefGoogle Scholar
  34. 34.
    J.C. Maxwell: A Treatise on Electricity and Magnetism, 3rd ed., Dover Publications Inc., New York, 1954, Chapter 9.Google Scholar
  35. 35.
    J. Wang, J.K. Carson, M.F. North, and D.J. Cleland: Int. J. Heat Mass Transfer, 2008, vol. 51, pp. 2389–97.CrossRefGoogle Scholar
  36. 36.
    R. Landauer: J. Appl. Phys., 1952, vol. 23, pp. 779–84.CrossRefGoogle Scholar
  37. 37.
    J. Helsing and G. Grimvall: J. Appl. Phys., 1991, vol. 70, pp. 1198–1206.CrossRefGoogle Scholar
  38. 38.
    R. L. Hamilton and O. K. Crosser: Ind. Eng. Chem. Fundamen., 1962, vol. 1, pp. 187–91.CrossRefGoogle Scholar
  39. 39.
    J.-B. Vaney, A. Piarristeguy, V. Ohorodniichuck, O. Ferry, A. Pradel, E. Alleno, J. Monnier, E. B. Lopes, A. P. Gonçalves, G. Delaizir, C. Candolfi, A. Dauscher, and B. Lenoir: J. Mater. Chem. C, 2015, vol. 3, pp. 11090–98.CrossRefGoogle Scholar
  40. 40.
    H.C. Pan, F.S. Pan, R.M. Yang, J. Peng, C.Y. Zhao, J. She, Z.Y. Gao, and A.T. Tang: J. Mater. Sci., 2014, vol. 49, pp. 3107–24.CrossRefGoogle Scholar
  41. 41.
    Y.S. Touloukian: Thermophysical Properties of Matter, Plenum Press, New York, 1970, pp. 1310–17.Google Scholar
  42. 42.
    H. Pan, F. Pan, X. Wang, J. Peng, J. Gou, J. She, and A. Tang: Int. J. Thermophys., 2013, vol. 34, pp. 1336–46.CrossRefGoogle Scholar
  43. 43.
    R.N. Lumley, N. Deeva, R. Larsen, J. Gembarovic, and J. Freeman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1074–86.CrossRefGoogle Scholar
  44. 44.
    X. Zheng, D.G. Cahill, P. Krasnochtchekov, R.S. Averback, and J.-C. Zhao: Acta Mater., 2007, vol. 55, pp. 5177–85.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.The State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations