Advertisement

Dynamic Strain Aging and Serration Behavior of Three High-Manganese Austenitic Steels

  • Seung-Yong Lee
  • Byoungchul HwangEmail author
Article
  • 12 Downloads

Abstract

The strain-rate dependence of the flow stress of three high-manganese austenitic steels with different compositions was studied in terms of dynamic strain aging and serration behavior at room temperature under quasi-static strain-rate ranges from 10−4 to 10−1 s−1. Tensile stress–strain curves showed that serrated flow occasionally appeared and the strain-rate dependence of flow stress was measured to be negative at all strains for Fe-22Mn-0.3C and Fe-30Mn-0.2C steels and at higher strain for Fe-30Mn-0.2C-1.5Al steel. Based on the tendency for a critical strain corresponding to the onset strain of serrated flow and electron back-scattered diffraction analysis, it was found that serrated flow was not induced by deformation twinning and \( \gamma \to \varepsilon \) martensitic transformation, but by dynamic strain aging associated with the interaction between partial dislocation and solute carbon. Also, the addition of Al content increased the critical strain, meaning that it effectively prohibits dynamic strain aging. In addition, dynamic strain aging promoted deformation twinning and/or \( \gamma \to \varepsilon \) martensitic transformation and resulted in negative strain-rate dependence of flow stress in the high-manganese austenitic steels.

Notes

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2017R1A2B2009336).

References

  1. 1.
    R.A. Hadfield: Science, 1888, vol. 12, pp. 284-6.Google Scholar
  2. 2.
    I.C. Yi, Y. Ha, K.H. Kwon, H. Lee and N.J. Kim: Mater. Sci. Eng. A, 2015, vol. 21, pp. 461-9.Google Scholar
  3. 3.
    J.E. Jin, M. Jung, C.Y. Lee, J. Jeong and Y.K. Lee: Met. Mater. Int., 2012, vol. 18, pp. 419-23.CrossRefGoogle Scholar
  4. 4.
    O. Grassel, L. Kruger, G. Frommeyer and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-409.CrossRefGoogle Scholar
  5. 5.
    G. Frommeyer, U. Brux and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438-46.CrossRefGoogle Scholar
  6. 6.
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141-68.CrossRefGoogle Scholar
  7. 7.
    I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449-62.CrossRefGoogle Scholar
  8. 8.
    J.K. Hwang, I.H. Son, J.Y. Yoo, A. Zargaran and N.J. Kim: Met. Mater. Int., 2015, vol. 21, pp. 815-22.CrossRefGoogle Scholar
  9. 9.
    J. E. Jung, J. Park, J.S. Kim, J.B. Jeon, S.K. Kim and Y.W. Chang: Met. Mater. Int., 2014, vol. 20, pp. 27-34.CrossRefGoogle Scholar
  10. 10.
    G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897-904.Google Scholar
  11. 11.
    Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31, pp. 355-60.CrossRefGoogle Scholar
  12. 12.
    K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K. Kim and N.J. Kim: 2011, Mater. Sci, Eng. A, vol. 528, pp. 2922-8.CrossRefGoogle Scholar
  13. 13.
    D.C. Saha, S. Han, K.G. Chin, I. Choi and Y.D. Park: Steel Res. Int., 2012, vol. 83, pp. 352-7.CrossRefGoogle Scholar
  14. 14.
    M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe and K. Tsuzaki: Int. J. Hydrogen Energy, 2017, vol. 42, pp. 12706-23.CrossRefGoogle Scholar
  15. 15.
    Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12, pp. 749-59.CrossRefGoogle Scholar
  16. 16.
    S.J. Lee, J. Kim, S.N. Kane and B.C. De Cooman: Acta Mater., 2011, vol. 59, pp. 6809-19.CrossRefGoogle Scholar
  17. 17.
    P.D. Zavattieri, V. Savic, L.G. Hector Jr., J.R. Fekete, W. Tong and Y. Xuan: Int. J. Plast., 2009, vol. 25, pp. 2298-2330.CrossRefGoogle Scholar
  18. 18.
    R.A. Mulford and U.F. Kocks: Acta Metall., 1979, vol. 27, pp. 1125-34.CrossRefGoogle Scholar
  19. 19.
    L.P. Kubin and Y. Estrin: J. Phys. III, 1991, vol. 1, pp. 929-43.Google Scholar
  20. 20.
    B.C. De Cooman, K.G. Chin, and J. Kim: in New trends and developments in automotive system engineering: High Mn TWIP Steels for Automotive Applications, edited by M. Chiaberge, InTech, 2011.Google Scholar
  21. 21.
    H.K. Yang, Z.J. Zhang, F.Y. Dong, Q.Q. Duan and Z.F. Zhang: Mater. Sci. Eng. A, 2014, vol. 607, pp. 551-8.CrossRefGoogle Scholar
  22. 22.
    R. Alturk, L. G. Hector Jr., C.M. Enloe, F. Abu-Farha and T.W. Brown: JOM, 2018, vol. 70, pp. 894-905.CrossRefGoogle Scholar
  23. 23.
    I. Jung, S.J. Lee and B.C. De Cooman: Scr. Mater., 2012, vol. 66, pp.729-32.CrossRefGoogle Scholar
  24. 24.
    J. von Appen and R. Dronskowski: Steel Res. Int., 2011, vol. 82, pp. 101-7.CrossRefGoogle Scholar
  25. 25.
    W. Owen and M. Grujicic: Acta Mater., 1998, vol. 47, pp. 111-26.CrossRefGoogle Scholar
  26. 26.
    T.S. Shun, C.M. Wan and J.G. Byrne: Scr. Metall., 1991, vol. 25, pp. 1769-74.CrossRefGoogle Scholar
  27. 27.
    M. Koyama, T. Sawaguchi, T. Lee, C.S. Lee and K. Tsuzaki: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7310-6.CrossRefGoogle Scholar
  28. 28.
    Y. Nakada and A.S. Keh: Acta Metall., 1970, vol. 18, pp. 437-43.CrossRefGoogle Scholar
  29. 29.
    Y. Tomota, M. Strum and J.W. Morris: Metall. Trans. A, 1986, vol. 17, pp. 537-47.CrossRefGoogle Scholar
  30. 30.
    S.Y. Lee, S.I. Lee and B. Hwang: Mater. Sci. Eng. A, 2018, vol. 711, pp. 22-8.CrossRefGoogle Scholar
  31. 31.
    H.K. Yang, Z.J. Zhang, Y.Z. Tian and Z.F. Zhang: Mater. Sci. Eng. A, 2017, vol. 690, pp. 146-57.CrossRefGoogle Scholar
  32. 32.
    K.Renard and P.J. Jacques: Mater. Sci. Eng. A, 2012, vol. 542, pp. 8-14.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSeoul National University of Science and TechnologySeoulKorea

Personalised recommendations