Correlation Between Secondary Precipitation and Tensile Ductility of High-Speed Steels

  • Xuefeng ZhouEmail author
  • Wentao Li
  • Hongbing Jiang
  • Feng Fang
  • Yiyou Tu
  • Jianqing Jiang


The aim of this study is to evaluate the effect of secondary carbide precipitation on strain hardening and tensile ductility of high-speed steels and to develop a novel pathway for ductility enhancement by engineering the annealing microstructure. The results demonstrate a strong correlation between secondary precipitation and austenitization. With decreasing austenitization temperature, secondary carbides exhibit a transformation from a rod-shaped Cr-rich M23C6 type to a granular Mo-rich M6C one, corresponding to a transition of the underlying eutectoid decomposition mechanism from a cooperative growth mode to a divorced eutectoid manner. Highly dispersed rod-shaped M23C6 precipitates contribute to an enhanced tensile strength but lead to a degraded work hardening rate in the late deformation stage and, therefore, a lower total elongation. In contrast, granular M6C precipitates exhibit an excellent capacity of accumulating dislocations and enhancing the work hardening rate especially at a high strain, which enables a significant increase of ductility. It is suggested that granular M6C precipitates embedded in fine ferritic grains with lean dislocations is a desirable annealing microstructure to produce a more ductile high-speed steel.



The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Project Nos. 51301038, 51371050, and 51201031), Key Research Program of Jiangsu Province (Project No. BE2016154), and Fundamental Research Funds for the Central Universities.


  1. 1.
    M. Boccalini and H. Goldenstein: Int. Mater. Rev., 2001, vol. 46, pp. 92–115.CrossRefGoogle Scholar
  2. 2.
    E.S. Lee, W.J. Park, K.H. Baik, and S. Ahn: Scripta Mater., 1998, vol. 39, pp. 1133–38.CrossRefGoogle Scholar
  3. 3.
    S. Lee, C.G. Lee, K.S. Sohn, and B.I. Jung: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 123–34.CrossRefGoogle Scholar
  4. 4.
    L. Lu, L.G. Hou, H. Cui, J.F. Huang, Y.A. Zhang, J.S. Zhang: J. Iron Steel Res. Int., 2016, vol. 23, pp. 501–08.CrossRefGoogle Scholar
  5. 5.
    L. Lu, L. G. Hou, J.X. Zhang, H.B. Wang, H. Cui, J.F. Huang, Y.A. Zhang, and J.S. Zhang: Mater. Charact., 2016, vol. 117, pp. 1–8.CrossRefGoogle Scholar
  6. 6.
    Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, and D.Z. Li: J. Mater. Process. Technol., 2010, vol. 210, pp. 536–41.CrossRefGoogle Scholar
  7. 7.
    M.J. Wang, L. Chen, Z.X. Wang, and E. Bao: J. Rare Earth, 2012, vol. 30, pp. 84–89.CrossRefGoogle Scholar
  8. 8.
    Q.X. Liu, D.P. Lu, L. Lu, Q. Hu, Q.F. Fu, and Z. Zhou: J. Iron Steel Res. Int., 2015, vol. 22, pp. 245–49.CrossRefGoogle Scholar
  9. 9.
    F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu, T.T. Liu, and R.J. Cheng: Progr. Nat. Sci. Mater. Int., 2011, vol. 21, pp. 180–86.CrossRefGoogle Scholar
  10. 10.
    Y.T. Zhu and X. Liao: Nat. Mater., 2004, vol. 3, pp. 351–52.CrossRefGoogle Scholar
  11. 11.
    R. Song, D. Ponge, and D. Raabe: Scripta Mater., 2005, vol. 52, pp. 1075–80.CrossRefGoogle Scholar
  12. 12.
    T. Lee, C.H. Park, D.L. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6558–64.CrossRefGoogle Scholar
  13. 13.
    C Prasad, P. Bhuyan, C. Kaithwas, R. Saha, and S. Mandal: Mater. Design, 2018, vol. 139, pp. 324–35.CrossRefGoogle Scholar
  14. 14.
    N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and D. Terada: ISIJ Int., 2008, vol. 48, pp. 1114–21.CrossRefGoogle Scholar
  15. 15.
    X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu: Proc. Nat. Acad. Sci., 2014, vol. 111, pp. 7197–7201.CrossRefGoogle Scholar
  16. 16.
    J.L. Ning, Y.T. Zhang, L. Huang, and Y.L. Feng: Mater. Design, 2017, vol. 120, pp. 280–90.CrossRefGoogle Scholar
  17. 17.
    R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881–92.CrossRefGoogle Scholar
  18. 18.
    G.Q. Zhang, H. Yuan, D.L. Jiao, Z. Li, Y. Zhang, and Z.W. Liu: Mater. Sci. Eng. A, 2012, vol. 558, pp. 566–71.CrossRefGoogle Scholar
  19. 19.
    Y.P. Ji, S.J. Wu, L.J. Xu, Y. Li, and S.Z. Wei: Wear, 2012, vol. 294, pp. 239–45.CrossRefGoogle Scholar
  20. 20.
    H.B. Wang, L.G. Hou, J.X. Zhang, L. Lu, H. Cui, and J.S. Zhang: Mater. Charact., 2015, vol. 106, pp. 245–54.CrossRefGoogle Scholar
  21. 21.
    J. Verhoeven and E. Gibson: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1181–89.CrossRefGoogle Scholar
  22. 22.
    M. Puls and J. Kirkaldy: Metall. Trans., 1972, vol. 3, pp. 2777–96.CrossRefGoogle Scholar
  23. 23.
    J. Verhoeven: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2431–38.CrossRefGoogle Scholar
  24. 24.
    P. Payson, W.L. Hodapp, and J. Leeder: Trans. ASM, 1940, vol. 28, pp. 306–26.Google Scholar
  25. 25.
    Y. Li and K. Ramesh: Acta Mater., 1998, vol. 46, pp. 5633–46.CrossRefGoogle Scholar
  26. 26.
    C. Sinclair, W. Poole, and Y. Bréchet: Scripta Mater., 2006, vol. 55, pp. 739–42.CrossRefGoogle Scholar
  27. 27.
    J.B. Kosco and D.A. Koss: Mater. Sci. Eng. A, 1993, vol. 169, pp. 1–7.CrossRefGoogle Scholar
  28. 28.
    C. Zheng, L. Li, W. Yang, and Z. Sun: Acta Metall. Sinica, 2013, vol. 49, pp. 257–64.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xuefeng Zhou
    • 1
    • 2
    Email author
  • Wentao Li
    • 1
    • 2
  • Hongbing Jiang
    • 1
    • 2
  • Feng Fang
    • 1
    • 2
  • Yiyou Tu
    • 1
    • 2
  • Jianqing Jiang
    • 3
  1. 1.School of Materials Science and EngineeringSoutheast UniversityNanjingP.R. China
  2. 2.Jiangsu Key Laboratory of Advanced Metallic MaterialsSoutheast UniversityNanjingP.R. China
  3. 3.Nanjing Forestry UniversityNanjingP.R. China

Personalised recommendations