Advertisement

Quench Sensitivity in a Dispersoid-Containing Al-Mg-Si Alloy

  • Katharina Strobel
  • Mark A. EastonEmail author
  • Matthew D. H. Lay
  • Paul A. Rometsch
  • Suming Zhu
  • Lisa Sweet
  • Nick C. Parson
  • Anita J. Hill
Article

Abstract

The quench sensitivity of a 6000 series alloy with a high content of dispersoids was studied over a wide range of cooling rate and natural-aging (NA) time. Positron annihilation lifetime spectroscopy, differential scanning calorimetry, and transmission electron microscopy were used to characterize the clustering and precipitation reactions. The alloy showed significant quench sensitivity after short NA (2 and 30 minutes), but the quench sensitivity was lower after long NA (24 hours). The quench sensitivity after the long NA can be accounted for by the solute loss due to the formation of nonhardening β′ precipitates on the dispersoids during cooling from solution treatment. For short NA, however, quenched-in vacancies and modifications to the precipitation sequence also have substantial contributions to the quench sensitivity. The current study provides new insight into the quench sensitivity of 6000 series alloys that contain a high dispersoid density.

Notes

Acknowledgments

The CAST Co-operative Research Centre was established under, and was supported in part by, the Australian Government’s Co-operative Research Centre Program. The Monash Centre for Electron Microscopy is thanked for allowing access to its facilities. Mr. Andy Yob of CSIRO is thanked for making available the samples used in this study. ME also gratefully acknowledges the support of the ARC Training Centre for Lightweight Automotive Structures (Project Number IC160100032).

References

  1. 1.
    1. M.J. Starink, B. Milkereit, Y. Zhang, and P.A. Rometsch: Mater. Design, 2015. vol. 88, pp. 958-971.CrossRefGoogle Scholar
  2. 2.
    H. Zoller and A. Ried: Zeitschrift Metallkunde, 1971. vol. 62(5), pp. 354–58.Google Scholar
  3. 3.
    3. B. Milkereit and M.J. Starink: Mater. Design, 2015. vol. 76, pp. 117-129.CrossRefGoogle Scholar
  4. 4.
    4. H. Westengen, L. Auran, and O. Reiso: Aluminium Dusseldorf, 1980. vol. 57(12), pp. 768-775.Google Scholar
  5. 5.
    5. L. Lodgaard and N. Ryum: Mater. Sci. Eng. A, 2000. vol. 283(1), pp. 144-152.CrossRefGoogle Scholar
  6. 6.
    6. H. Hirasawa: Scripta Metallurgica, 1975. vol. 9(9), pp. 955-958.CrossRefGoogle Scholar
  7. 7.
    7. J.A. Österreicher, M. Kumar, A. Schiffl, S. Schwarz, and G.R. Bourret: Mater. Sci. Eng. A, 2017. vol. 687, pp. 175-180.CrossRefGoogle Scholar
  8. 8.
    8. H. Zhan and B. Hu: Mater. Char., 2018. vol. 142, pp. 602-612.CrossRefGoogle Scholar
  9. 9.
    9. K. Buchanan, J. Ribis, J. Garnier, and K. Colas: Philosophical Magazine Letters, 2016. vol. 96(4), pp. 121-131.CrossRefGoogle Scholar
  10. 10.
    10. D.H. Bratland, O. Grong, H. Shercliff, O.R. Myhr, and S. Tjotta: Acta Mater., 1997. vol. 45(1), pp. 1-22.CrossRefGoogle Scholar
  11. 11.
    11. K. Strobel, M.A. Easton, L. Sweet, M.J. Couper, and J.-F. Nie: Mater. Trans., 2011. vol. 52(5), pp. 914-919.CrossRefGoogle Scholar
  12. 12.
    12. L. Lodgaard and N. Ryum: Aluminum Transactions, 2000. vol. 2(2), pp. 267-275.Google Scholar
  13. 13.
    13. L. Lodgaard and N. Ryum: Mater. Sci. Tech., 2000. vol. 16(6), pp. 599-604.CrossRefGoogle Scholar
  14. 14.
    14. L. Lodgaard and N. Ryum: Mater. Sci. Forum, 2000. vol. 331-337, pp. 945-950.CrossRefGoogle Scholar
  15. 15.
    15. C.L. Liu, Q. Du, N. Parson, and W.J. Poole: Scripta Mater., 2018. vol. 152, pp. 59-63.CrossRefGoogle Scholar
  16. 16.
    J.E. Yoo, A. Shan, I.G. Moon, and S.J. Maeng: J. Mater. Sci., 1999. vol. 34(11), pp. 2679–83.CrossRefGoogle Scholar
  17. 17.
    H. Bomas: Die Abschreckempfindlichkeit von manganhaltigen AlMgSi-Legierungen. Fortschritt-Berichte der VDI-Zeitschriften, Reihe 5: Grund- und Werkstoffe, VDI-Verlag, Düsseldorf, 1980, vol. 47, p. 5.Google Scholar
  18. 18.
    I. Musulin and O.C. Celliers: Light Met. 1990, Minerals, Metals and Materials Soc (TMS), 1990, pp. 951–54.Google Scholar
  19. 19.
    19. O. Lohne and A.L. Dons: Scand. J. Metall., 1983. vol. 12(1), pp. 34-36.Google Scholar
  20. 20.
    20. M.S. Remøe, K. Marthinsen, I. Westermann, K. Pederson, J. Røyset, and C. Marioara: Mater. Sci. Eng. A, 2017. vol. 693, pp. 60-72.CrossRefGoogle Scholar
  21. 21.
    21. C. Flament, J. Ribis, J. Garnier, T. Vandenberghe, J. Henry, and A. Deschamps: Philos. Mag., 2015. vol. 95(8), pp. 906-917.CrossRefGoogle Scholar
  22. 22.
    22. K. Strobel, M.D.H. Lay, M.A. Easton, L. Sweet, S. Zhu, N. Parson, and A.J. Hill: Materials Characterization, 2016. vol. 111, pp. 43-52.CrossRefGoogle Scholar
  23. 23.
    23. J.W. Evancho and J.T. Staley: Metall. Trans., 1974. vol. 5(1), pp. 43-47.Google Scholar
  24. 24.
    24. D.W. Pashley, M.H. Jacobs, and J.T. Vietz: Philos. Mag., 1967. vol. 16, pp. 51-76.CrossRefGoogle Scholar
  25. 25.
    25. A. Falahati, P. Lang, and E. Kozeschnik: Mater. Sci. Forum, 2012. vol. 706-709, pp. 317-322.CrossRefGoogle Scholar
  26. 26.
    26. A. Deschamps, G. Texier, S. Ringeval, and L. Delfaut-Durut: Mater. Sci. Eng. A, 2009. vol. 501(1-2), pp. 133-139.CrossRefGoogle Scholar
  27. 27.
    P. Lang, A. Falahati, M.R. Ahmadi, P. Warczok, E. Povoden-Karadeniz, E. Kozeschnik, and R. Radis: Phase Stability, Diffusion, Kinetics and Their Applications, 2011, pp. 284–91.Google Scholar
  28. 28.
    28. M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P. Uggowitzer, and S. Pogatscher: Mater. Design, 2016. vol. 107, pp. 257-268.CrossRefGoogle Scholar
  29. 29.
    29. M. Werinos, H. Antrekowitsch, E. Kozeschnik, T. Ebner, F. Moszner, J.F. Löffler, P. Uggowitzer, and S. Pogatscher: Scripta Mater., 2016. vol. 112, pp. 148-151.CrossRefGoogle Scholar
  30. 30.
    30. S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, S. Gerstl, M.F. Francis, W.A. Curtin, J.F. Löffler, and P. Uggowitzer: Phys. Rev. Letters, 2014. vol. 112, pp. 225701.CrossRefGoogle Scholar
  31. 31.
    31. F.D. Fischer, J. Svoboda, F. Appel, and E. Kozeschnik: Acta Mater., 2011. vol. 59(9), pp. 3463-3472.CrossRefGoogle Scholar
  32. 32.
    32. B. Klobes, T.E.M. Staab, M. Haaks, K. Maierand, and I. Wieler: Physica Status Solidi - Rapid Research Letters, 2008. vol. 2(5), pp. 224-226.CrossRefGoogle Scholar
  33. 33.
    33. S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P.J. Uggowitzer: Acta Mater., 2011. vol. 59(9), pp. 3352-3363.CrossRefGoogle Scholar
  34. 34.
    34. H.S. Zurob and H. Seyedrezai: Scripta Mater., 2009. vol. 61(2), pp. 141-144.CrossRefGoogle Scholar
  35. 35.
    35. R.C. Picu and X. Zhijie: Scripta Mater., 2007. vol. 57(1), pp. 45-48.CrossRefGoogle Scholar
  36. 36.
    D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase transformations in matals and alloys. 3rd ed. 2009: CRC Press,Google Scholar
  37. 37.
    37. C. Wolverton: Acta Mater., 2007. vol. 55(17), pp. 5867-5872.CrossRefGoogle Scholar
  38. 38.
    38. H. Seyedrezai, D. Grebennikov, P. Mascher, and H.S. Zurob: Mater. Sci. Eng. A, 2009. vol. 525(1-2), pp. 186-191.CrossRefGoogle Scholar
  39. 39.
    39. S. Esmaeili, D. Vaumousse, M.W. Zandbergen, W.J. Poole, A. Cerezo, and D.J. Lloyd: Philos. Mag., 2007. vol. 87(25), pp. 3797-3816.CrossRefGoogle Scholar
  40. 40.
    A. Falahati, M.R. Ahmadi, P. Warczok, P. Lang, E. Povoden-Karadeniz, and E. Kozeschnik: Phase Stability, Diffusion, Kinetics and Their Applications, 2011, pp. 292–99.Google Scholar
  41. 41.
    41. S. Pogatscher, E. Kozeschnik, H. Antrekowitsch, M. Werinos, S. Gerstl, J.F. Löffler, and P. Uggowitzer: Scripta Mater., 2014. vol. 89, pp. 53-56.CrossRefGoogle Scholar
  42. 42.
    P. Dumitraschkewitz, S. Gerstl, L. Stephenson, P. Uggowitzer, and S. Pogatscher: Adv. Eng. Mater., 2018. vol., pp. 1800255.CrossRefGoogle Scholar
  43. 43.
    43. J. Banhart, M. Liu, Y. Yong, Z. Liang, C.S.T. Chang, M. Elsayed, and M.D.H. Lay: Physica B: Condensed Matter, 2012. vol. 407(14), pp. 2689-2696.CrossRefGoogle Scholar
  44. 44.
    M.D.H. Lay, H.S. Zurob, C.R. Hutchinson, T.J. Bastow, and A.J. Hill: Metall. Mater. Trans. A, 2012. vol. 43A, pp. 4507-13.CrossRefGoogle Scholar
  45. 45.
    45. J.F. Nie, B.C. Muddle, H.I. Aaronson, S.P. Ringer, and J.P. Hirth: Metall. Mater. Trans. A, 2002. vol. 33A(6), pp. 1649-1658.CrossRefGoogle Scholar
  46. 46.
    46. H.W. Zandbergen, S.J. Andersen, and J. Jansen: Science, 1997. vol. 277(5330), pp. 1221-1225.CrossRefGoogle Scholar
  47. 47.
    47. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, and O. Reiso: Acta Mater., 1998. vol. 46(9), pp. 3283-3298.CrossRefGoogle Scholar
  48. 48.
    48. K. Matsuda, S. Ikeno, and S. Tada: J. Jpn. Inst. Met., 1993. vol. 57(10), pp. 1107-1113.CrossRefGoogle Scholar
  49. 49.
    49. M.H. Jacobs: Philos. Mag., 1972. vol. 26(1), pp. 1-13.CrossRefGoogle Scholar
  50. 50.
    50. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen: Acta Mater., 2007. vol. 55(11), pp. 3815-3823.CrossRefGoogle Scholar
  51. 51.
    51. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Mater., 1998. vol. 46, pp. 3893-3904.CrossRefGoogle Scholar
  52. 52.
    T. Saito, E.A. Mørtsell, S. Wenner, C.D. Marioara, S.J. Andersen, J. Friis, K. Matsuda, and R. Holmestad: Adv. Engng. Mater., 2018. vol. 20(7), pp. 1800125.CrossRefGoogle Scholar
  53. 53.
    53. K. Matsuda, V. Sakaguchi, V. Miyata, V. Uetani, T. Sato, A. Kamio, and S. Ikeno: J. Mater. Sci., 2000. vol. 35(1), pp. 179-189.CrossRefGoogle Scholar
  54. 54.
    54. S. Wenner, L. Jones, C.D. Marioara, and R. Holmestad: Micron, 2017. vol. 96, pp. 103-111.CrossRefGoogle Scholar
  55. 55.
    55. M.J. Starink: International Materials Reviews, 2004. vol. 49(3-4), pp. 191-226.CrossRefGoogle Scholar
  56. 56.
    J.M. Zuo and J.C. Mabon: Microsc. Microanal., 2004, vol. 10, pp. 1000–1CrossRefGoogle Scholar
  57. 57.
    57. R. Ferragut, A. Somoza, and A. Dupasquier: Journal of Physics: Condensed Matter, 1998. vol. 10(17), pp. 3903-3918.CrossRefGoogle Scholar
  58. 58.
    58. G. Dlubek: Material Science Forum, 1987. vol. 13-14, pp. 11-32.CrossRefGoogle Scholar
  59. 59.
    J. Banhart, M.D.H. Lay, C.S.T. Chang, and A.J. Hill: Phys. Rev. B: Condens. Matter, 2011. vol. 83(1), pp. 014101.CrossRefGoogle Scholar
  60. 60.
    A. Somoza, A. Dupasquier, I.J. Polmear, P. Folegati, and R. Ferragut: Physical Review B (Condensed Matter), 2000. vol. 61(21), pp. 14454.CrossRefGoogle Scholar
  61. 61.
    61. J. Royset, T. Stene, J.A. Saeter, and O. Reiso: Mater. Sci. Forum, 2006. vol. 519-521, pp. 239-244.CrossRefGoogle Scholar
  62. 62.
    62. D.W. Pashley, J.W. Rhodes, and A. Sendorek: J. Inst. Metals, 1966. vol. 94, pp. 41-49.Google Scholar
  63. 63.
    63. A. Poznak, V. Thole, and P. Sanders: Metals, 2018. vol. 8, pp. 309.CrossRefGoogle Scholar
  64. 64.
    B. Milkereit, in Fakultät für Maschinenbau und Schiffstechnik. 2010, Universität Rostock: Rostock. pp. 178.Google Scholar
  65. 65.
    65. M.J. Starink: Thermochim Acta, 2003. vol. 404, pp. 163-176.CrossRefGoogle Scholar
  66. 66.
    M.J. Starink: J. Alloys Compd., 2007. vol. 433(1-2), pp. 4-6.CrossRefGoogle Scholar
  67. 67.
    67. A. Dupasquier, G. Kogel, and A. Somoza: Acta Mater., 2004. vol. 52(16), pp. 4707-4726.CrossRefGoogle Scholar
  68. 68.
    68. T.E.M. Staab, B. Klobes, I. Kohlbach, B. Korff, M. Haaks, E. Dudzik, and K. Maier: J. Phys: Conf. Series, 2011. vol. 265, pp. 012108.CrossRefGoogle Scholar
  69. 69.
    J.M. Campillo Robles, E. Ogando, and F. Plazaola: Int. Workshop Positron Stud. Defects, IOP Publishing Ltd., 2011, pp. 1–10.Google Scholar
  70. 70.
    70. J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D.H. Lay, and A.J. Hill: Adv. Engng. Mater., 2010. vol. 12(7), pp. 559-571.CrossRefGoogle Scholar
  71. 71.
    71. C.S.T. Chang and J. Banhart: Metall. Mater. Trans. A, 2010. vol. 42(7), pp. 1960-1964.Google Scholar
  72. 72.
    72. B. Milkereit, N. Wanderka, C. Schick, and O. Kessler: Mater. Sci. Eng. A, 2012. vol. 550, pp. 87-96.CrossRefGoogle Scholar
  73. 73.
    J.T. Staley: Mater. Sci. Tech., 1987. vol. 3(11), pp. 923–35.CrossRefGoogle Scholar
  74. 74.
    74. C.S.T. Chang, I. Wieler, N. Wanderka, and J. Banhart: Ultramicroscopy, 2009. vol. 109(5), pp. 585-592.CrossRefGoogle Scholar
  75. 75.
    75. A. Serizawa, S. Hirosawa, and T. Sato: Metall. Mater. Trans. A, 2008. vol. 39(2), pp. 243-251.CrossRefGoogle Scholar
  76. 76.
    76. M. Murayama and K. Hono: Acta Mater., 1999. vol. 47(5), pp. 1537-1548.CrossRefGoogle Scholar
  77. 77.
    77. Y.X. Lai, B.C. Jiang, C.H. Liu, Z.K. Chen, C.L. Wu, and J.H. Chen: J. Alloys Compd., 2017. vol. 701, pp. 94-98.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Katharina Strobel
    • 1
  • Mark A. Easton
    • 2
    Email author
  • Matthew D. H. Lay
    • 3
  • Paul A. Rometsch
    • 4
  • Suming Zhu
    • 2
    • 5
  • Lisa Sweet
    • 5
  • Nick C. Parson
    • 4
  • Anita J. Hill
    • 6
  1. 1.AMAG Austria MetallBraunau-RanshofenAustria
  2. 2.School of EngineeringRMIT UniversityCarltonAustralia
  3. 3.FB RiceMelbourneAustralia
  4. 4.Rio Tinto Aluminium, Arvida Research and Development CenterSaguenayCanada
  5. 5.Department of Materials Science and EngineeringMonash UniversityVICAustralia
  6. 6.CSIRO ManufacturingClaytonAustralia

Personalised recommendations