Advertisement

Evolution and Growth Kinetics of θ Precipitates in Naturally Aged MgLiAlZn Alloy Studied by In Situ Small-Angle X-ray Scattering

  • Yung-Chien Huang
  • Cheng-Si Tsao
  • Shyi-Kaan WuEmail author
Article
  • 40 Downloads

Abstract

The MgLiAlZn (LAZ1110) magnesium alloy was studied by in situ small-angle X-ray scattering (SAXS) to reveal the evolution of MgLi2Al θ precipitates (ppts) in the early aging stage at room temperature (RT). DSC and XRD measurements reveal θ ppts in naturally aged alloy. During 0 to 22 hours of early aging at RT, the growth and coarsening of plate-like θ nano-ppts are quantitatively resolved using SAXS in terms of the temporal evolution of the radius, thickness, and relative volume fraction. In this early aging period, the radius of θ ppts grows gradually from 3.1 to 6.9 nm with a nearly constant thickness of 3.7 nm. The relative volume fraction of θ ppts increases rapidly in the early aging stage and then more slowly in the peak aging stage at ~ 17 hours. The growth behavior of θ ppts after the peak aging stage follows the coarsening kinetics and causes hardness softening. It is supposed that the corresponding increase and decrease in hardness can be attributed to the coherency strengthening and coherency loss of the θ ppts, respectively.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support for this study provided by the Ministry of Science and Technology (MOST), Taiwan, under Grant No. MOST 107-2221-E002-015-MY2.

References

  1. 1.
    1. Y. Kojima: Mater. Trans., 2001, vol. 42, pp. 1154-1159.CrossRefGoogle Scholar
  2. 2.
    2. Y. Kojima, S. Kamado: Mater. Sci. Forum, 2005, vol. 488-489, pp. 9-16.CrossRefGoogle Scholar
  3. 3.
    3. H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, M. Niemeyer: Mater. Trans., 2001, vol. 42, pp. 1160-1166.CrossRefGoogle Scholar
  4. 4.
    4. K. Higashi, J. Wolfenstine: Mater. Lett., 1991, vol. 10, pp. 329-332.CrossRefGoogle Scholar
  5. 5.
    5. M. Kawasaki, K. Kubota, K.I. Higashi, T.G. Langdon: Mat. Sci. Eng. A, 2006, vol. 429, pp. 334-340.CrossRefGoogle Scholar
  6. 6.
    6. P. Metenier, G. Gonzalezdoncel, O.A. Ruano, J. Wolfenstine, O.D. Sherby: Mat. Sci. Eng. A, 1990, vol. 125, pp. 195-202.CrossRefGoogle Scholar
  7. 7.
    ASM Handbook: Alloy Phase Diagrams, ASM International, Ohio, 1992, vol. 3, pp. 2–276.Google Scholar
  8. 8.
    8. F.H. Herbstein, B.L. Averbach: Acta Metall. Mater., 1956, vol. 4, pp. 407-413.CrossRefGoogle Scholar
  9. 9.
    9. C.T. Chiang, S. Lee, C.L. Chu: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1374-1379.CrossRefGoogle Scholar
  10. 10.
    10. Z.X. Kang, K. Lin, J.Y. Zhang: Mater. Sci. Tech., 2016, vol. 32, pp. 498-506.CrossRefGoogle Scholar
  11. 11.
    11. X.R. Meng, R.Z. Wu, M.L. Zhang, L.B. Wu, C.L. Cui: J. Alloys Compd., 2009, vol. 486, pp. 722-725.CrossRefGoogle Scholar
  12. 12.
    G. Sheng, M. Staiger, M. Kral: Magnesium Technology, TMS, 2003, pp. 77–79.Google Scholar
  13. 13.
    13. G.S. Song, M. Staiger, M. Kral: Mat. Sci. Eng. A, 2004, vol. 371, pp. 371-376.CrossRefGoogle Scholar
  14. 14.
    14. H.Y. Wu, Z.W. Gao, J.Y. Lin, C.H. Chiu: J. Alloys Compd., 2009, vol. 474, pp. 158-163.CrossRefGoogle Scholar
  15. 15.
    15. L.B. Wu, C.L. Cui, R.Z. Wu, J.Q. Li, H.B. Zhan, M.L. Zhang: Mat. Sci. Eng. A, 2011, vol. 528, pp. 2174-2179.CrossRefGoogle Scholar
  16. 16.
    16. A. Alamo, A.D. Banchik: J. Mater. Sci., 1980, vol. 15, pp. 222-229.CrossRefGoogle Scholar
  17. 17.
    17. J.Y. Wang, J. Alloys Compd., 2009, vol. 485, pp. 241-244.CrossRefGoogle Scholar
  18. 18.
    18. C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, E.H. Han: Sci. Rep., 2017, vol. 7, 40078.CrossRefGoogle Scholar
  19. 19.
    19. Z.K. Qu, R.Z. Wu, H.B. Zhan, M.L. Zhang: J. Alloys Compd., 2012, vol. 536, pp. 145-149.CrossRefGoogle Scholar
  20. 20.
    20. H.Y. Wu, J.Y. Lin, Z.W. Gao, H.W. Chen: Mat. Sci. Eng. A, 2009, vol. 523, pp. 7-12.CrossRefGoogle Scholar
  21. 21.
    21. C.C. Hsu, J.Y. Wang, S. Lee: Mater. Trans., 2008, vol. 49, pp. 2728-2731.CrossRefGoogle Scholar
  22. 22.
    22. J.C. McDonald: ASM Trans., 1968, vol. 61, pp. 505.Google Scholar
  23. 23.
    23. C.J. Ma, D. Zhang, J.N. Qin: Trans. Nonferrous Met. Soc. China, 1999, vol. 9, pp. 772-777.Google Scholar
  24. 24.
    24. Z. Drozd, Z. Trojanova, S. Kudela: J. Alloys Compd., 2004, vol. 378, pp. 192-195.CrossRefGoogle Scholar
  25. 25.
    25. P. Crawford, R. Barrosa, J. Mendez, J. Foyos, O.S. EsSaid: J. Mater. Process. Tech., 1996, vol. 56, pp. 108-118.CrossRefGoogle Scholar
  26. 26.
    26.A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, H. Tsubakino: Mater. Trans., 2003, vol. 44, pp. 619-624.CrossRefGoogle Scholar
  27. 27.
    27. X.Y. Guo, R.Z. Wu, J.H. Zhang, B. Liu, M.L. Zhang: Mater. Design, 2014, vol. 53, pp. 528-533.CrossRefGoogle Scholar
  28. 28.
    28. H.Y. Lin, R.Z. Wu, P.F. Fei, Z. Leng, X.Y. Guo, J.H. Zhang, B. Liu, M.L. Zhang: Kovove Mater., 2014, vol. 52, pp. 47-55.Google Scholar
  29. 29.
    29. R.Z. Wu, X.Y. Guo, D.Y. Li: J. Alloys Compd., 2014, vol. 616, pp. 408-412.CrossRefGoogle Scholar
  30. 30.
    30. G.S. Song, M.V. Kral: Mater. Charact., 2005, vol. 54, pp. 279-286.CrossRefGoogle Scholar
  31. 31.
    31. R.Z. Wu, M.L. Zhang: Mat. Sci. Eng. A, 2009, vol. 520, pp. 36-39.CrossRefGoogle Scholar
  32. 32.
    32. T. Liu, S.D. Wu, S.X. Li, P.J. Li: Mat. Sci. Eng. A, 2007, vol. 460, pp. 499-503.CrossRefGoogle Scholar
  33. 33.
    33. Z.J. Li, X.Y. Jing, Y. Yuan, M.L. Zhang: Corros. Sci., 2012, vol. 63, pp. 358-366.CrossRefGoogle Scholar
  34. 34.
    34. L.L. Shi, Y.J. Xu, K. Li, Z.P. Yao, S.Q. Wu: Curr. Appl. Phys., 2010, vol. 10, pp. 719-723.CrossRefGoogle Scholar
  35. 35.
    35. H. Zhang, G.C. Yao, S.L. Wang, Y.H. Liu, H.J. Luo: Surf. Coat. Tech., 2008, vol. 202, pp. 1825-1830.CrossRefGoogle Scholar
  36. 36.
    36. S.K. Wu, Y.H. Li, K.T. Chien, C. Chien, C.S. Yang: J. Alloys Compd., 2013, vol. 563, pp. 234-241.CrossRefGoogle Scholar
  37. 37.
    37. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch: Acta Mater., 2003, vol. 51, pp. 5335-5348.CrossRefGoogle Scholar
  38. 38.
    38. R. Ferragut, F. Moia, F. Fiori, D. Lussana, G. Riontino: J. Alloys Compd., 2010, vol. 495, pp. 408-411.CrossRefGoogle Scholar
  39. 39.
    39. G. Barucca, R. Ferragut, F. Fiori, D. Lussana, P. Mengucci, F. Moia, G. Riontino: Acta Mater., 2011, vol. 59, pp. 4151-4158.CrossRefGoogle Scholar
  40. 40.
    40. W. Liu, W.L. Johnson, S. Schneider, U. Geyer, P. Thiyagarajan: Phys. Rev. B, 1999, vol. 59, pp. 11755-11759.CrossRefGoogle Scholar
  41. 41.
    41. B. Rashkova, W. Prantl, R. Goergl, J. Keckes, S. Cohen, M. Bamberger, G. Dehm: Mat. Sci. Eng. A, 2008, vol. 494, pp. 158-165.CrossRefGoogle Scholar
  42. 42.
    42. A. Deschamps, M. Garcia, J. Chevy, B. Davo, F. De Geuser: Acta Mater., 2017, vol. 122, pp. 32-46.CrossRefGoogle Scholar
  43. 43.
    43. A. Deschamps, L. Lae, P. Guyot: Acta Mater., 2007, vol. 55, pp. 2775-2783.CrossRefGoogle Scholar
  44. 44.
    44. E. Gumbmann, F. De Geuser, C. Sigli, A. Deschamps: Acta Mater., 2017, vol. 133, pp. 172-185.CrossRefGoogle Scholar
  45. 45.
    45. F. De Geuser, F. Bley, A. Deschamps: J. Appl. Crystallogr., 2012, vol. 45, pp. 1208-1218.CrossRefGoogle Scholar
  46. 46.
    46. P. Fratzl, F. Langmayr, O. Paris: J. Appl. Crystallogr., 1993, vol. 26, pp. 820-826.CrossRefGoogle Scholar
  47. 47.
    47. A. Deschamps, F. De Geuser: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 77-86.CrossRefGoogle Scholar
  48. 48.
    O. Glatter, O. Kratky: Small Angle X-ray Scattering, Academic Press: New York, 1982, p. 222.Google Scholar
  49. 49.
    49. C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies: Acta Mater., 2005, vol. 53, pp. 2447-2458.CrossRefGoogle Scholar
  50. 50.
    50. Y.C. Huang, C.S. Tsao, S.K. Wu: Metals, 2018, vol. 8, p. 352.CrossRefGoogle Scholar
  51. 51.
    51. C.S. Tsao, E.W. Huang, M.H. Wen, T.Y. Kuo, S.L. Jeng, U.S. Jeng, Y.S. Sun: J. Alloys Compd., 2013, vol. 579, pp. 138-146.CrossRefGoogle Scholar
  52. 52.
    52. E.W. Huang, C.S. Tsao, M.H. Wen, T.Y. Kuo, S.Y. Tu, B.W. Wu, C.J. Su, U.S. Jeng: J. Mater. Res., 2014, vol. 29, pp. 874-879.CrossRefGoogle Scholar
  53. 53.
    53. S.R. Kline: J. Appl. Crystallogr., 2006, vol. 39, pp. 895-900.CrossRefGoogle Scholar
  54. 54.
    54. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-1112.CrossRefGoogle Scholar
  55. 55.
    55. S. Esmaeili, D.J. Lloyd, W.J. Poole: Acta Mater., 2003, vol. 51, pp. 3467-3481.CrossRefGoogle Scholar
  56. 56.
    56. W.A. Johnson, R.F. Mehl: T. Am. I. Min. Met. Eng., 1939, vol. 135, pp. 416-442.Google Scholar
  57. 57.
    57. A. Kolmogoroff: Izv. Akad. Nauk SSSR Ser. Mat., 1937, vol. 1, pp. 355-359.Google Scholar
  58. 58.
    58. R.E. Smallman, R.J. Bishop: Modern Physical Metallurgy and Materials Engineering: Chapter 8 - Strengthening and toughening, Butterworth-Heinemann, Oxford, 1999, pp. 259-296.CrossRefGoogle Scholar
  59. 59.
    M.N. Shetty: Dislocations and mechanical behaviour of materials: 4.12-Precipitation Hardening, PHI Learning Private Limited, Delhi, Indian, 2013, pp. 419–31.Google Scholar
  60. 60.
    T.H. Courtney: Mechanical behavior of materials: 5.6 Particle Hardening, McGraw Hill, New York, USA, 2000, pp. 196–209.Google Scholar
  61. 61.
    61. H.H. J. Roesler, M. Baeker: Mechanical Behaviour of Engineering Materials, Springer-Verlag, Berlin/Heidelberg, Germany, 2007, pp. 165-225.CrossRefGoogle Scholar
  62. 62.
    62. Z.L. Guo, W. Sha: Mater. Trans., 2002, vol. 43, pp. 1273-1282.CrossRefGoogle Scholar
  63. 63.
    63. A. Vattre, B. Devincre, A. Roos: Intermetallics, 2009, vol. 17, pp. 988-994.CrossRefGoogle Scholar
  64. 64.
    64. C.R. Barrett, W.D. Nix, A.S. Tetelman: The Principles of Engineering Materials, Prentice-Hall, New Jersey, USA, 1973, p. 263.Google Scholar
  65. 65.
    65. J.W. Martin: Precipitation Hardening: 2 - The strength of aged alloy, Butterworth-Heinemann, Oxford, 1998, pp. 79-125.CrossRefGoogle Scholar
  66. 66.
    66. T. Gladman: Mater. Sci. Tech. Ser., 1999, vol. 15, pp. 30-36.CrossRefGoogle Scholar
  67. 67.
    H.S. M.F. Ashby, D. Cebon: Materials: Engineering, Science, Processing and Design: 6. Beyond elasticity: plasticity, yielding and ductility, Butterworth-Heinemann, Oxford, 2018, p. 129.Google Scholar
  68. 68.
    68. M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura: Scripta Mater., 2005, vol. 53, pp. 799-803.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yung-Chien Huang
    • 1
  • Cheng-Si Tsao
    • 1
    • 2
  • Shyi-Kaan Wu
    • 1
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Nuclear Fuel and Materials DivisionInstitute of Nuclear Energy ResearchTaoyuanTaiwan
  3. 3.Department of Mechanical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations