Microstructure and Mechanical Properties of Ti-6Al-4V Rods Fabricated by Powder Compact Extrusion of TiH2/Al60V40 Powder Blend

  • Yifei Luo
  • Yuehuang Xie
  • Wei Zeng
  • Jiamiao LiangEmail author
  • Deliang ZhangEmail author


Nearly fully dense Ti-6Al-4V rods were fabricated by powder compact extrusion of TiH2/Al60V40 powder blend. The microstructure, mechanical properties, and fracture behaviors of the Ti-6Al-4V rods extruded at various temperatures from 1100 °C to 1400 °C were investigated. The results showed that with the extrusion temperature of 1100 °C, undissolved V-rich particles still existed in the microstructure, but they disappeared once the extrusion temperature increased to 1200 °C. Nearly complete dehydrogenation of TiH2 was achieved during rapid induction heating, holding, and extrusion. With increasing the extrusion temperature, prior β grain sizes and α/β lamella colony sizes increased dramatically, while the change of α lamella thickness was much less significant. The correlation between microstructure and mechanical properties suggests that α/β lamella interfaces, instead of colony boundaries, are responsible for strengthening. The coarse prior β grains whose sizes reached 150 μm had a deleterious effect on the tensile ductility due to localized deformation, as evidenced by the intergranular fracture. The rod extruded at 1200 °C had the best elongation to fracture of 9.3 pct while still keeping a high yield strength of 969 MPa and ultimate tensile strength of 1102 MPa.



The financial support to this work by National Natural Science Foundation of China (Project Number: 51271115) is gratefully acknowledged.


  1. 1.
    D. Banerjeea and J.C. Williams: Acta Mater., 2013, vol. 61, pp. 844-879.CrossRefGoogle Scholar
  2. 2.
    G. Lütjering and J.C. Williams: Titanium, 2nd ed., Springer Berlin Heidelberg, New York, 2007, pp. 203-258.Google Scholar
  3. 3.
    Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free: Int. Mater. Rev., 2017, pp. 1–53.Google Scholar
  4. 4.
    C. Cui, B. Hu, L. Zhao, and S. Liu: Mater. Des., 2011, vol. 32, pp. 1684-1691.CrossRefGoogle Scholar
  5. 5.
    F. Yang and B. Gabbitas: J. Alloys Compd., 2017, vol. 695, pp. 1455-1461.CrossRefGoogle Scholar
  6. 6.
    C. Liang, M.X. Ma, M.T. Jia, S. Raynova, J.Q. Yan, and D.L. Zhang: Mater. Sci. Eng. A, 2014, vol. 619, pp. 290-299.CrossRefGoogle Scholar
  7. 7.
    Y. Zheng, X. Yao, J. Liang, and D. Zhang: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1842-1853.CrossRefGoogle Scholar
  8. 8.
    M. Jia, D. Zhang, J. Liang, and B. Gabbitas: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2015-2029.CrossRefGoogle Scholar
  9. 9.
    F. Yang, D. Zhang, B. Gabbitas, H. Lu, and C. Wang: Mater. Sci. Eng. A, 2014, vol. 598, pp. 360-367.CrossRefGoogle Scholar
  10. 10.
    F. Cao, K.R. Chandran, P. Kumar, P. Sun, Z.Z. Fang, and M. Koopman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2335-2345.CrossRefGoogle Scholar
  11. 11.
    F. Cao, K.R. Chandran, and P. Kumar: Scripta Mater., 2017, vol. 130, pp. 22-26.CrossRefGoogle Scholar
  12. 12.
    B. Sharma, S.K. Vajpai, and K. Ameyama: J. Alloys Compd., 2016, vol. 683, pp. 51-55.CrossRefGoogle Scholar
  13. 13.
    S. Luo, Y. Yang, G. Schaffer, and M. Qian: Scripta Mater., 2013, vol. 69, pp. 69-72.CrossRefGoogle Scholar
  14. 14.
    B. Liu, S. Huang, L. Chen, J. Van Humbeeck, and J. Vleugels: Mater. Lett., 2017, vol. 191, pp. 89-92.CrossRefGoogle Scholar
  15. 15.
    Y.H. Li, R.B. Chen, G.X. Qi, Z.T. Wang, and Z.Y. Deng: J. Alloys Compd., 2009, vol. 485, pp. 215-218.CrossRefGoogle Scholar
  16. 16.
    D.L. Zhang, C.C. Koch, and R.O. Scattergood: Mater. Sci. Eng. A, 2009, vol. 516, pp. 270-275.CrossRefGoogle Scholar
  17. 17.
    L. Zeng and T.R. Bieler: Mater. Sci. Eng. A, 2005, vol. 392, pp. 403-414.CrossRefGoogle Scholar
  18. 18.
    L. Huang, L. Geng, B. Wang, H. Xu, and B. Kaveendran: Compos. Part A, 2012, vol. 43, pp. 486-491.CrossRefGoogle Scholar
  19. 19.
    H.J. Christ, A. Senemmar, M. Decker, and K. Prüßner: Sadhana, 2003, vol. 28, pp. 453-465.CrossRefGoogle Scholar
  20. 20.
    C. Liang, M. Ma, M. Jia, S. Raynova, J. Yan, and D. Zhang: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5095-5102.CrossRefGoogle Scholar
  21. 21.
    G. Chen and P. Cao: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5630-5633.CrossRefGoogle Scholar
  22. 22.
    G.W. Wille and J.W. Davis: Hydrogen in titanium alloys, McDonnell Douglas Astronautics Co., St. Louis, 1981, pp. 14-17.CrossRefGoogle Scholar
  23. 23.
    M.L. Wasz, F.R. Brotzen, R.B. Mclellan, and A.J. Griffin: Int. Mater. Rev., 2014, vol. 41, pp. 1-12.CrossRefGoogle Scholar
  24. 24.
    S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker, and F. Zhang: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2377-2386.CrossRefGoogle Scholar
  25. 25.
    A.R. Troiano: Metallogr. Microstruct. Anal., 2016, vol. 5, pp. 557-569.CrossRefGoogle Scholar
  26. 26.
    Y. Feng, W. Zhang, G. Cui, J. Wu, and W. Chen: J. Alloys Compd., 2017, vol. 721, pp. 383-391.CrossRefGoogle Scholar
  27. 27.
    T. Ahmed and H. Rack: Mater. Sci. Eng. A, 1998, vol. 243, pp. 206-211.CrossRefGoogle Scholar
  28. 28.
    B. Vrancken, L. Thijs, J.P. Kruth, and J.V. Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177-185.CrossRefGoogle Scholar
  29. 29.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.Google Scholar
  30. 30.
    G. Lütjering: Mater. Sci. Eng. A, 1999, vol. 263, pp. 117-126.CrossRefGoogle Scholar
  31. 31.
    S.L. Semiatin and T.R. Bieler: Acta Mater., 2001, vol. 49, pp. 3565-3573.CrossRefGoogle Scholar
  32. 32.
    D.M. Dimiduk, P.M. Hazzledine, T.A. Parthasarathy, M.G. Mendiratta, and S. Seshagiri: Metall. Mater. Trans. A, 1998, vol. 29, pp. 37-47.CrossRefGoogle Scholar
  33. 33.
    S. Kar, T. Searles, E. Lee, G. Viswanathan, H. Fraser, J. Tiley, and R. Banerjee: Metall. Mater. Trans. A, 2006, vol. 37, pp. 559-566.CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano: Mater. Sci. Eng. A, 2008, vol. 485, pp. 448-455.CrossRefGoogle Scholar
  35. 35.
    D.G. Lee, S. Lee, C.S. Lee, and S. Hur: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2541-2548.CrossRefGoogle Scholar
  36. 36.
    Z.Z. Fang, P. Sun, and H. Wang: Adv. Eng. Mater., 2012, vol. 14, pp. 383-387.CrossRefGoogle Scholar
  37. 37.
    A.P. Singh, F. Yang, R. Torrens, and B. Gabbitas: Mater. Sci. Eng. A, 2017, vol. 712, pp. 157-165.CrossRefGoogle Scholar
  38. 38.
    I. Sen, S. Tamirisakandala, D. Miracle, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4983-4993.CrossRefGoogle Scholar
  39. 39.
    Q. Zhang, J. Chen, Z. Qi, X. Lin, H. Tan, and W. Huang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3651-3662.CrossRefGoogle Scholar
  40. 40.
    B. Baufeld, O. Van der Biest, and R. Gault: Mater. Des., 2010, vol. 31, pp. S106-S111.CrossRefGoogle Scholar
  41. 41.
    C. Sauer and G. Luetjering: J. Mater. Proces. Technol., 2001, vol. 117, pp. 311-317.CrossRefGoogle Scholar
  42. 42.
    K. Maruyama, R. Yamamoto, H. Nakakuki, and N. Fujitsuna: Mater. Sci. Eng. A, 1997, 239, pp. 419-428.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and EngineeringNortheastern UniversityShenyangP.R. China

Personalised recommendations