Advertisement

Microstructure Solidification Maps for Al-10 Wt Pct Si Alloys

  • William Hearn
  • Abdoul-Aziz BognoEmail author
  • Jose Spinelli
  • Jonas Valloton
  • Hani Henein
Article
  • 30 Downloads

Abstract

Hypo-eutectic Al-Si alloys are widely used in both the automotive and aerospace industries; however, they still have limited usage as structural materials, due to the inherent morphology of the Si phase that forms within the eutectic structure. This non-ideal Si morphology can be modified, via alloy additions and/or rapid solidification (RS), but the underlying mechanism(s) behind this is poorly understood. This work focused on understanding the influence of RS on the eutectic structure, for hypo-eutectic Al-10 wt pct Si alloys produced by Impulse Atomization and Differential Scanning Calorimetry. This study found that the eutectic Si forms into four distinct morphologies: (1) flaky, (2) fibrous, (3) globular + fibrous and (4) globular, depending on the solidification conditions. As a result, two solidification maps of the Si morphology are proposed, one based on local eutectic solidification conditions and another based on a solidification continuous cooling diagram (SCCT). Both maps help identify the required conditions for certain Si morphologies to form. Hardness measurements were also carried out and it was found that the Si morphology would influence the alloy hardness, with the highest value being achieved when the eutectic Si was globular. This result indicates that the Si morphology is an important factor that can alter the mechanical properties of hypo-eutectic Al-Si alloys.

Notes

Acknowledgments

The authors wish to acknowledge funding of this work from a Collaborative Research and Development Grant from the Natural Sciences and Engineering Research Council of Canada, Equispheres Inc., and the European Space Agency (ESA).

References

  1. 1.
    Z. Li, A. Samuel, F. Samuel, C. Ravindran, S. Valtierra and H. Doty, Materials Science and Engineering A, 2004, vol. 367, pp. 96-110.CrossRefGoogle Scholar
  2. 2.
    F. Robles-Hernandez, J. Ramirez and R. Mackay, Al-Si Alloys: Automotive, Aeronautical and Aerospace Applications, Springer, 2017.CrossRefGoogle Scholar
  3. 3.
    T. Hosch, L. England and R. Napolitano, Journal of Materials Science, 2009, vol. 44, pp. 4892-4899.CrossRefGoogle Scholar
  4. 4.
    S. Lu and A. Hellawell, Metallurgical Transactions A, 1987, vol. 18, no. 10, pp. 1721-1733.CrossRefGoogle Scholar
  5. 5.
    A. Mazahery and M. Shabani, JOM, 2014, vol. 66, no. 5, pp. 726-738.CrossRefGoogle Scholar
  6. 6.
    N. Rathod and J. Manghani, International Journal of Emergin Trends in Engineering and Development, 2012, vol. 5, pp. 574-582.Google Scholar
  7. 7.
    S. Hegde and K. Prabhu, Journal of Materials Science, 2008, vol. 43, pp. 3009-27.CrossRefGoogle Scholar
  8. 8.
    M. Makhlouf and H. Guthy, Journal of Light Metals, 2001, vol. 1, pp. 199-218.CrossRefGoogle Scholar
  9. 9.
    A. Hellawell, Progress in Materials Science, 1970, vol. 15, pp. 1-78.CrossRefGoogle Scholar
  10. 10.
    S. Khan and R. Elliott, Journal of Materials Science, 1996, vol. 31, no. 14, pp. 3731-3737.CrossRefGoogle Scholar
  11. 11.
    R. Trivedi, F. Jin and I. Anderson, Acta Materialia, 2003, vol. 51, pp. 289-300.CrossRefGoogle Scholar
  12. 12.
    Y. Kalay, L. Chumley, I. Anderson and R. Napolitano, Metall. Mater. Trans. A, 2007, vol. 38, pp. 1452-57.CrossRefGoogle Scholar
  13. 13.
    M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll and W. Kurz, Acta Metallurgica et Materialia, 1992, vol. 40, no. 7, pp. 1637-1644.CrossRefGoogle Scholar
  14. 14.
    J. Wiskel, H. Henein and E. Maire, Canadian Metallurgical Quarterly, 2002, vol. 41, no. 1, pp. 97-110.CrossRefGoogle Scholar
  15. 15.
    A.-A. Bogno, J. Valloton, H. Henein, D. Ivey, A. Locock and M. Gallerneault, Canadian Metallurgical Quarterly, 2018, vol. 57, no. 2, pp. 148-159.CrossRefGoogle Scholar
  16. 16.
    M. Gunduz and E. Cadirli, Materials Science & Engineering A, 2002, vol. 327, pp. 167-185.CrossRefGoogle Scholar
  17. 17.
    M. Gunduz, H. Kaya, E. Cadirli and A. Ozmen, Materials Science and Engineering, 2004, vol. 369, pp. 215-29.CrossRefGoogle Scholar
  18. 18.
    K. Jackson and J. Hunt, Trans. Am. Inst. Min. Engineers, 1966, vol. 236, p. 1129.Google Scholar
  19. 19.
    J. Wiskel, K. Navel, H. Henein and E. Marie, Canadian Metallurgical Quarterly, 2002, vol. 41, no. 2, pp. 193-204.CrossRefGoogle Scholar
  20. 20.
    J. Dantzig and M. Rappaz, Solidification, Boca Raton: CRC Press, 2009.CrossRefGoogle Scholar
  21. 21.
    C. Levi and R. Mehrabian, Metallurgical Transactions A, 1982, vol. 13A, pp. 13-23.CrossRefGoogle Scholar
  22. 22.
    A. L. Genau, Iowa State University, Ames, Iowa, 2004.Google Scholar
  23. 23.
    H. Petersen: Report No. 224, Danish Atomic Energy Commission, Riso, 1970, pp. 6–7.Google Scholar
  24. 24.
    C. Caceres, C. Davidson, J. Griffiths and Q. Wang, Met. and Mat. Transactions A, 1999, vol. 30A, pp. 2611-2618.CrossRefGoogle Scholar
  25. 25.
    K. Oswalt and M. Misra, AFS Transactions, 1980, vol. 88, pp. 845-862.Google Scholar
  26. 26.
    P. Anyalebechi, T. Rouns, and R. Sanders: in Light Metals 1991, TMS 1990, pp. 821–50.Google Scholar
  27. 27.
    A.-A. Bogno, P. D. Khatibi, H. Henein and C.-A. Gandin, Metallurgical and Materials Transactions A, 2016, vol. 47A, pp. 4606-4615.CrossRefGoogle Scholar
  28. 28.
    W. Prukkanon, N. Srisukhumbowornchai and C. Limmaneevichitr, Jornal of Alloys and Compounds, 2009, vol. 477, pp. 454-460.CrossRefGoogle Scholar
  29. 29.
    H. Jones: in Rapid Solidification of Metals and Alloys, The Institution of Metallurgists, London, 1983, pp. 40–43.Google Scholar
  30. 30.
    P. Anyalebechi, TMS, 2004, pp. 217-33.Google Scholar
  31. 31.
    G. Armstrong and H. Jones, Solidification and Casting of Metals, London: Metals Society, 1979.Google Scholar
  32. 32.
    R. Grugel and W. Kurz, Metallurgical Transactions A, 1987, vol. 18, pp. 1137-1142.CrossRefGoogle Scholar
  33. 33.
    P. Magnin, J. Mason and R. Trivedi, Acta Metallurgica et Materialia, 1991, vol. 39, no. 4, pp. 469-480.CrossRefGoogle Scholar
  34. 34.
    A. Garcia, T. Clyne and M. Prates, Metallurgical Transactions B, 1979, vol. 10B, pp. 85-92.CrossRefGoogle Scholar
  35. 35.
    J. Spinelli, A.-A. Bogno and H. Henein, Metallurgical and Materials Transactions A, 2018, vol. 49, no. 2, pp. 550-562.CrossRefGoogle Scholar
  36. 36.
    Z. Zhang, X. Bian, Y. Wang and X. Liu, Transactions of Nonferrous Metals Society of China, 2001, vol. 11, no. 3, pp. 374-377.Google Scholar
  37. 37.
    R. Retes, T. Bello, R. Kakitani, T. Costa, A. Garcia, N. Cheung and J. Spinelli, Materials Science and Engineering A, 2017, vol. 685, pp. 235-243.CrossRefGoogle Scholar
  38. 38.
    J. Spinelli, W. Hearn, A.-A. Bogno, and H. Henein: in Light Metals 2018, TMS, 2018, pp. 381–87.Google Scholar
  39. 39.
    W. D. Callister Jr. and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, Hoboken: John Wiley & Sons, 2008.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • William Hearn
    • 1
  • Abdoul-Aziz Bogno
    • 1
    Email author
  • Jose Spinelli
    • 1
    • 2
  • Jonas Valloton
    • 1
  • Hani Henein
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Department of Materials EngineeringFederal University of São CarlosSão CarlosBrazil

Personalised recommendations