Dissolution of Intermetallic Second-Phase Particles in Zircaloy-2 in High-Temperature Steam

  • Weicheng Zhong
  • Xiang Liu
  • Peter A. Mouche
  • Jun-Li Lin
  • Donghee Park
  • Mohamed S. Elbakhshwan
  • Simerjeet K. Gill
  • Yang Ren
  • James F. Stubbins
  • Brent J. HeuserEmail author


The stability of intermetallic second-phase particles (SPPs) in coated Zircaloy-2 was studied in 700 °C steam environments up to 20 hours. Hydrogen generated from high-temperature steam oxidation of uncoated Zr-induced δ-hydrides formation in the Zircaloy matrix. Synchrotron XRD demonstrated that longer exposure times increased hydride peak intensity and decreased intermetallic SPPs’ peak intensity. Cross-sectional SEM analysis verified the intermetallic SPPs’ volume fraction reduction. The size distribution of intermetallic SPPs was characterized and larger particles were dissolved at longer oxidation time. A correlation between the hydrogen concentration and the volume fraction of intermetallic SPPs at 700 °C steam environment was found, with the volume fraction of SPPs decreasing as hydrogen concentration increases.



This study was supported by the US Department of Energy Nuclear Energy University Programs Integrated Research Project under Contract Number IRP-12-4728; supported by the University of Illinois Campus Research Board under Award Number RB17006; and supported by Laboratory Directed Research and Development (LDRD) Program (Project No. 13-027) at BNL. The microanalysis was performed in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which are partially supported by the US Department of Energy under Grants DE-FG02-07ER46453 and DE-FG02-07ER46471. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors are grateful to Richard Spence (APS) for his help with synchrotron XRD measurement.


  1. 1.
    [1] G.P. Sabol: J. ASTM Int., 2005, vol. 2, pp. 3-24CrossRefGoogle Scholar
  2. 2.
    [2] R.M. Kruger, R.B. Adamson, and S.S. Brenner: J. Nucl. Mater., 1992, vol. 189, pp.193-200.CrossRefGoogle Scholar
  3. 3.
    [3] S.C. Lumley, S. T. Murphy, P. A. Burr, R. W. Grimes, P. R. Chard-Tuckey, and M. R. Wenman: J. Nucl. Mater., 2013, vol. 437, pp. 122-129.CrossRefGoogle Scholar
  4. 4.
    [4] X. Meng, and D.O. Northwood: J. Nucl. Mater., 1989, vol. 168, pp. 125-136.CrossRefGoogle Scholar
  5. 5.
    P. Rudling, K. L. Vannesjö, G. Vesterlund, and A. R. Massih: Zirconium in the Nuclear Industry: Seventh International Symposium, ASTM STP 939, 1987, pp. 292-306Google Scholar
  6. 6.
    [6] Y. Hatano, K. Isobe, R. Hitaka, and M. Sugisaki: J. Nucl. Sci. Technol., 1996, vol. 33, pp. 944-949.CrossRefGoogle Scholar
  7. 7.
    [7] J. Wang, H. Fan, J. Xiong, H. Liu, Z. Miao, S. Ying, and G. Yang: Nucl. Eng. Des., 2011, vol.241, pp. 471-475.CrossRefGoogle Scholar
  8. 8.
    [8] M. Yao, J. Wang, J. Peng, B. Zhou, and Q. Li: J. ASTM Int., 2011, vol. 8, pp. 466-495CrossRefGoogle Scholar
  9. 9.
    P. Tägtstrom, M. Limbäck, M. Dahlbäck, T. Andersson, and H. Pettersson: Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, 2002, pp. 96-118.Google Scholar
  10. 10.
    Y. Hatano, M. Sugisaki, K. Kitano, and M. Hayashi: Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp. 901–17.Google Scholar
  11. 11.
    [11] D.F. Taylor: J. Nucl. Mater., 1991, vol. 184, pp: 65-77.CrossRefGoogle Scholar
  12. 12.
    B.C. Cheng, R.M. Kruger, and R.B. Adamson: Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, 1994, pp. 400–18.Google Scholar
  13. 13.
    M. Griffiths, R.W. Gilbert, and G.J.C. Carpenter: J. Nucl. Mater., 1987, vol. 150, pp: 53-66.CrossRefGoogle Scholar
  14. 14.
    [14] A.T. Motta, and C. Lemaignan: J. Nucl. Mater., 1992, vol. 195, pp:277-285CrossRefGoogle Scholar
  15. 15.
    [15] P. Vizcaíno, A. Flores, P. Bozzano, A. Banchik, R. Versaci, and R. Ríos: J. ASTM Int., 2011, vol. 8, pp. 754-783CrossRefGoogle Scholar
  16. 16.
    [16] W. Zhong, P.A. Mouche, and B.J. Heuser: J. Nucl. Mater., 2018, vol. 498, pp: 137-148CrossRefGoogle Scholar
  17. 17.
    [17] W. Zhong, P.A. Mouche, X. Han, B.J. Heuser, K.K. Mandapaka, and G.S. Was: J. Nucl. Mater., 2016, vol. 470, pp: 327-338.CrossRefGoogle Scholar
  18. 18.
    [18] M.M. Strehle, B.J. Heuser, M.S. Elbakhshwan, X. Han, D.J. Gennardo, H.K. Pappas, and H. Ju: Thin Solid Films, 2012, vol. 520, pp: 5616-5626.CrossRefGoogle Scholar
  19. 19.
    [19] R.S. Daum, Y.S. Chu, and A.T. Motta: J. Nucl. Mater., 2009, vol.392, pp: 453-463.CrossRefGoogle Scholar
  20. 20.
    B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley Publishing Co. Inc., Melbourne, 1956, pp. 104-137Google Scholar
  21. 21.
    S.S. Sidhu, N.S. Satya Murthy, F.P. Campos, and D.D. Zauberis: No. ANL-FGF-332; UAC-6209. Argonne National Lab., 1963, pp: 87-98.Google Scholar
  22. 22.
    [22] J.L. Lin, X. Han, B.J. Heuser, and J.D. Almer: J. Nucl. Mater., 2016, vol.471, pp: 299-307.CrossRefGoogle Scholar
  23. 23.
    [23] J.J. Kearns: J. Nucl. Mater., 1972, vol.43, pp: 330-338.CrossRefGoogle Scholar
  24. 24.
    [24] A.T.W. Barrow, A. Korinek, and M.R. Daymond: J. Nucl. Mater., 2013, vol.432, pp: 366-370.CrossRefGoogle Scholar
  25. 25.
    [25] K. Une, K. Nogita, S. Ishimoto, and K. Ogata: J. Nucl. Sci. Technol., 2004, vol. 41, pp: 731-740.CrossRefGoogle Scholar
  26. 26.
    [26] K.M. Krishna, A. Sain, I. Samajdar, G. K. Dey, D. Srivastava, S. Neogy, R. Tewari, and S. Banerjee: Acta materialia, 2006, vol.54, pp: 4665-4675.CrossRefGoogle Scholar
  27. 27.
    [27] C. Cochrane, and M.R. Daymond: Metall. Mater. Trans. A, 2018, vol.49, pp: 3468-3485.CrossRefGoogle Scholar
  28. 28.
    C. Toffolon-Masclet, T. Guilbert, and J. C. Brachet: J. Nucl. Mater., 2008, vol. 372, pp: 367-378.CrossRefGoogle Scholar
  29. 29.
    [29] M.P. Pitt, L. K. W. Pitt, H. Fjellvåg, and B. C. Hauback: J. Alloys Compd., 2011, vol. 509, pp: 5515-5524.CrossRefGoogle Scholar
  30. 30.
    [30] M.H. Sørby, H. Fjellvåg, and B. C. Hauback: J. Alloys Compd., 2005, vol.394, pp: 107-115.CrossRefGoogle Scholar
  31. 31.
    F. Aubertin, and S. J. Campbell.: Hyperfine Interact., 1990, vol. 54, pp: 767-773.CrossRefGoogle Scholar
  32. 32.
    [32] P.A. Burr, S.T. Murphy, S.C. Lumley, M.R. Wenman, and R.W. Grimes: Corros. Sci., 2013, vol. 69, pp: 1-4.CrossRefGoogle Scholar
  33. 33.
    [33] H.W. Li, K. Ishikawa, and K. Aoki: J. Alloys Compd., 2005, vol. 88, pp: 49-58.CrossRefGoogle Scholar
  34. 34.
    [34] P. Raj, P. Suryanarayana, A. Sathyamoorthy, K. Shashikala, and R. M. Iyer: J. Alloys Compd., 1992, vol. 178, pp: 393-401CrossRefGoogle Scholar
  35. 35.
    J.M. Filho, A.W. Carbonari, W. Pendl Jr, J.I. Moura, and R.N. Saxena: J. Alloys Compd., 1995, vol. 224, pp: 60-65CrossRefGoogle Scholar
  36. 36.
    [36] J.L. Lin, W. Zhong, H.Z. Bilheux, and B.J. Heuser: J. Nucl. Mater., 2017, vol. 496, pp: 129-139.CrossRefGoogle Scholar
  37. 37.
    [37] G.J.C. Carpenter: J. Nucl. Mater., 1973, vol. 48, pp: 264-266.CrossRefGoogle Scholar
  38. 38.
    [38] K. Aoki, X.G. Li, and T. Masumoto: Acta metallurgica et materialia, 1992, vol. 40, pp: 1717-1726.CrossRefGoogle Scholar
  39. 39.
    [39] K. Ishikawa, N. Ogasawara, and K. Aoki: Philos. Mag. Lett., 2004, vol. 84, pp: 207-214.CrossRefGoogle Scholar
  40. 40.
    [40] P. Chemelle, D.B. Knorr, J.B. Van Der Sande, and R.M. Pelloux: J. Nucl. Mater., 1983, vol. 113, pp: 58-64.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Weicheng Zhong
    • 1
  • Xiang Liu
    • 1
  • Peter A. Mouche
    • 1
  • Jun-Li Lin
    • 1
  • Donghee Park
    • 1
  • Mohamed S. Elbakhshwan
    • 2
  • Simerjeet K. Gill
    • 3
  • Yang Ren
    • 4
  • James F. Stubbins
    • 1
  • Brent J. Heuser
    • 1
  1. 1.Department of Nuclear, Plasma, and Radiological EngineeringUniversity of IllinoisUrbanaUSA
  2. 2.Department of Engineering PhysicsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Nuclear Science and Technology DepartmentBrookhaven National LaboratoryUptonUSA
  4. 4.X-ray Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations